Types of silvopastoral systems: adding trees to pastoral/rangelands.

Autores
Beltran, Marcelo Javier; Cambareri, Gustavo Sebastián; Banegas, Natalia Romina; Peri, Pablo Luis; Colcombet, Luis; Martínez Pastur, Guillermo; Lencinas, Maria Vanessa; Rodríguez Souilla, J.; Cellini, Juan Manuel; Cosentino, Vanina Rosa Noemi
Año de publicación
2025
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Silvopastoral Systems (SPS) have been identified as an efficient land management strategy to increase the performance of animal and tree production, livestock welfare (Esquivel, 2017), and improve carbon (C) sequestration in soil and in trees to offset livestock emissions (Figueiredo et al., 2017). These systems are a type of livestock agroforestry, which associates trees and/or shrubs with pastures (Mosquera-Losada et al., 2006; Chará et al., 2020). The system comprises a woody component, which involves any type of tree, interacting with conventional components (herbaceous forage or pastures) under an integrated management system (Gándara et al., 2021). Trees provide timber, fruit, firewood, seeds, and shade generators (Luccerini et al., 2013). SPS are alternative management systems which both mitigate and adapt to climate change (Feliciano et al., 2018). SPS are a sustainable way of land management that has been both politically and economically promoted worldwide (CAP 2014–2020) as a tool to increase carbon sequestration in soils among other benefits that agroforestry provides (Mosquera-Losada et al., 2018). In SPS, there are both ecological and economic interactions between the different components. Thus, SPS are those that have been designed to improve beneficial–ecological interactions, which may be shown as improvement in yield per unit area, resource use efficiency, and/or enhancement in environmental issues. Silvopastoral advantages can be enumerated as the provision of multiple products (e.g. food, wood, fodder, mulch, medicinal plants) or services (e.g. maintenance of soil fertility, erosion control, microclimate improvement, biodiversity enhancement, watershed protection, reduction of fire risk, carbon sequestration) by the trees (Peri et al., 2016a; Mosquera-Losada et al., 2005). In some regions or areas, SPS are used according to the basic premise that these systems can be more biologically productive, profitable, and sustainable than forestry or animal production monocultures depending on the environment. The trees in SPS enhance nutrient uptake from the soil, which is then returning to the grass through the degradation of organic matter, improving both soil fertility and forage quality. The trees, furthermore, strengthen animal welfare due to their moderating effects on climate extremes (Dube et al., 2012; Peri, 2011).
Instituto de Suelos
Fil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Beltran, Marcelo Javier. Universidad Nacional de San Antonio de Areco (UNSAdA); Argentina
Fil: Cambareri, Gustavo Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina
Fil: Banegas, Natalia Romina. Universidad Nacional de Tucumán (UNT). Facultad de Agronomía y Zootecnia. Cátedra Edafología; Argentina
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina
Fil: Colcombet, Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; Argentina
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC), Argentina
Fil: Lencinas, María Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); Argentina
Fil: Rodríguez Souilla, J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); Argentina
Fil: Cellini, Juan Manuel. Universidad Nacional de la Plata (UNLP). Facultad de Ciencias Naturales y Museo. Laboratorio de Investigaciones en Maderas; Argentina
Fil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Cosentino, Vanina Rosa Noemi. Universidad de Buenos Aires (UBA). Facultad de Agronomía. Cátedra de Fertilidad y Fertilizantes; Argentina
Fuente
Advances in temperate agroforestry / Edited by: Professor Maria Rosa Mosquera-Losada, Dr Ladislau Martin, Professor Anastasia Pantera, and Dr Allison Chatrchyan. Cambridge: Burleigh Dodds Science, 2025. p. 189-214
Materia
Sistema Integrado de Producción Agropecuaria
Estructura Agraria
Integrated Crop-livestock Systems
Agrarian Structure
Silvopastoril
Sistemas Agrícolas Resilientes
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/24585

id INTADig_2802eed29a686849d06eb3d728ff00b2
oai_identifier_str oai:localhost:20.500.12123/24585
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Types of silvopastoral systems: adding trees to pastoral/rangelands.Beltran, Marcelo JavierCambareri, Gustavo SebastiánBanegas, Natalia RominaPeri, Pablo LuisColcombet, LuisMartínez Pastur, GuillermoLencinas, Maria VanessaRodríguez Souilla, J.Cellini, Juan ManuelCosentino, Vanina Rosa NoemiSistema Integrado de Producción AgropecuariaEstructura AgrariaIntegrated Crop-livestock SystemsAgrarian StructureSilvopastorilSistemas Agrícolas ResilientesSilvopastoral Systems (SPS) have been identified as an efficient land management strategy to increase the performance of animal and tree production, livestock welfare (Esquivel, 2017), and improve carbon (C) sequestration in soil and in trees to offset livestock emissions (Figueiredo et al., 2017). These systems are a type of livestock agroforestry, which associates trees and/or shrubs with pastures (Mosquera-Losada et al., 2006; Chará et al., 2020). The system comprises a woody component, which involves any type of tree, interacting with conventional components (herbaceous forage or pastures) under an integrated management system (Gándara et al., 2021). Trees provide timber, fruit, firewood, seeds, and shade generators (Luccerini et al., 2013). SPS are alternative management systems which both mitigate and adapt to climate change (Feliciano et al., 2018). SPS are a sustainable way of land management that has been both politically and economically promoted worldwide (CAP 2014–2020) as a tool to increase carbon sequestration in soils among other benefits that agroforestry provides (Mosquera-Losada et al., 2018). In SPS, there are both ecological and economic interactions between the different components. Thus, SPS are those that have been designed to improve beneficial–ecological interactions, which may be shown as improvement in yield per unit area, resource use efficiency, and/or enhancement in environmental issues. Silvopastoral advantages can be enumerated as the provision of multiple products (e.g. food, wood, fodder, mulch, medicinal plants) or services (e.g. maintenance of soil fertility, erosion control, microclimate improvement, biodiversity enhancement, watershed protection, reduction of fire risk, carbon sequestration) by the trees (Peri et al., 2016a; Mosquera-Losada et al., 2005). In some regions or areas, SPS are used according to the basic premise that these systems can be more biologically productive, profitable, and sustainable than forestry or animal production monocultures depending on the environment. The trees in SPS enhance nutrient uptake from the soil, which is then returning to the grass through the degradation of organic matter, improving both soil fertility and forage quality. The trees, furthermore, strengthen animal welfare due to their moderating effects on climate extremes (Dube et al., 2012; Peri, 2011).Instituto de SuelosFil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Beltran, Marcelo Javier. Universidad Nacional de San Antonio de Areco (UNSAdA); ArgentinaFil: Cambareri, Gustavo Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; ArgentinaFil: Banegas, Natalia Romina. Universidad Nacional de Tucumán (UNT). Facultad de Agronomía y Zootecnia. Cátedra Edafología; ArgentinaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; ArgentinaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; ArgentinaFil: Colcombet, Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; ArgentinaFil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC), ArgentinaFil: Lencinas, María Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); ArgentinaFil: Rodríguez Souilla, J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); ArgentinaFil: Cellini, Juan Manuel. Universidad Nacional de la Plata (UNLP). Facultad de Ciencias Naturales y Museo. Laboratorio de Investigaciones en Maderas; ArgentinaFil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Cosentino, Vanina Rosa Noemi. Universidad de Buenos Aires (UBA). Facultad de Agronomía. Cátedra de Fertilidad y Fertilizantes; ArgentinaBurleigh Dodds Science2025-11-22T22:55:57Z2025-11-22T22:55:57Z2025-09info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttp://hdl.handle.net/20.500.12123/24585978-1-80146-719-3http://dx.doi.org/10.19103/AS.2024.0141.12Advances in temperate agroforestry / Edited by: Professor Maria Rosa Mosquera-Losada, Dr Ladislau Martin, Professor Anastasia Pantera, and Dr Allison Chatrchyan. Cambridge: Burleigh Dodds Science, 2025. p. 189-214reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-11-27T08:40:53Zoai:localhost:20.500.12123/24585instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-11-27 08:40:53.283INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Types of silvopastoral systems: adding trees to pastoral/rangelands.
title Types of silvopastoral systems: adding trees to pastoral/rangelands.
spellingShingle Types of silvopastoral systems: adding trees to pastoral/rangelands.
Beltran, Marcelo Javier
Sistema Integrado de Producción Agropecuaria
Estructura Agraria
Integrated Crop-livestock Systems
Agrarian Structure
Silvopastoril
Sistemas Agrícolas Resilientes
title_short Types of silvopastoral systems: adding trees to pastoral/rangelands.
title_full Types of silvopastoral systems: adding trees to pastoral/rangelands.
title_fullStr Types of silvopastoral systems: adding trees to pastoral/rangelands.
title_full_unstemmed Types of silvopastoral systems: adding trees to pastoral/rangelands.
title_sort Types of silvopastoral systems: adding trees to pastoral/rangelands.
dc.creator.none.fl_str_mv Beltran, Marcelo Javier
Cambareri, Gustavo Sebastián
Banegas, Natalia Romina
Peri, Pablo Luis
Colcombet, Luis
Martínez Pastur, Guillermo
Lencinas, Maria Vanessa
Rodríguez Souilla, J.
Cellini, Juan Manuel
Cosentino, Vanina Rosa Noemi
author Beltran, Marcelo Javier
author_facet Beltran, Marcelo Javier
Cambareri, Gustavo Sebastián
Banegas, Natalia Romina
Peri, Pablo Luis
Colcombet, Luis
Martínez Pastur, Guillermo
Lencinas, Maria Vanessa
Rodríguez Souilla, J.
Cellini, Juan Manuel
Cosentino, Vanina Rosa Noemi
author_role author
author2 Cambareri, Gustavo Sebastián
Banegas, Natalia Romina
Peri, Pablo Luis
Colcombet, Luis
Martínez Pastur, Guillermo
Lencinas, Maria Vanessa
Rodríguez Souilla, J.
Cellini, Juan Manuel
Cosentino, Vanina Rosa Noemi
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Sistema Integrado de Producción Agropecuaria
Estructura Agraria
Integrated Crop-livestock Systems
Agrarian Structure
Silvopastoril
Sistemas Agrícolas Resilientes
topic Sistema Integrado de Producción Agropecuaria
Estructura Agraria
Integrated Crop-livestock Systems
Agrarian Structure
Silvopastoril
Sistemas Agrícolas Resilientes
dc.description.none.fl_txt_mv Silvopastoral Systems (SPS) have been identified as an efficient land management strategy to increase the performance of animal and tree production, livestock welfare (Esquivel, 2017), and improve carbon (C) sequestration in soil and in trees to offset livestock emissions (Figueiredo et al., 2017). These systems are a type of livestock agroforestry, which associates trees and/or shrubs with pastures (Mosquera-Losada et al., 2006; Chará et al., 2020). The system comprises a woody component, which involves any type of tree, interacting with conventional components (herbaceous forage or pastures) under an integrated management system (Gándara et al., 2021). Trees provide timber, fruit, firewood, seeds, and shade generators (Luccerini et al., 2013). SPS are alternative management systems which both mitigate and adapt to climate change (Feliciano et al., 2018). SPS are a sustainable way of land management that has been both politically and economically promoted worldwide (CAP 2014–2020) as a tool to increase carbon sequestration in soils among other benefits that agroforestry provides (Mosquera-Losada et al., 2018). In SPS, there are both ecological and economic interactions between the different components. Thus, SPS are those that have been designed to improve beneficial–ecological interactions, which may be shown as improvement in yield per unit area, resource use efficiency, and/or enhancement in environmental issues. Silvopastoral advantages can be enumerated as the provision of multiple products (e.g. food, wood, fodder, mulch, medicinal plants) or services (e.g. maintenance of soil fertility, erosion control, microclimate improvement, biodiversity enhancement, watershed protection, reduction of fire risk, carbon sequestration) by the trees (Peri et al., 2016a; Mosquera-Losada et al., 2005). In some regions or areas, SPS are used according to the basic premise that these systems can be more biologically productive, profitable, and sustainable than forestry or animal production monocultures depending on the environment. The trees in SPS enhance nutrient uptake from the soil, which is then returning to the grass through the degradation of organic matter, improving both soil fertility and forage quality. The trees, furthermore, strengthen animal welfare due to their moderating effects on climate extremes (Dube et al., 2012; Peri, 2011).
Instituto de Suelos
Fil: Beltran, Marcelo Javier. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Beltran, Marcelo Javier. Universidad Nacional de San Antonio de Areco (UNSAdA); Argentina
Fil: Cambareri, Gustavo Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Banegas, Natalia Romina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Animal del Chaco Semiárido; Argentina
Fil: Banegas, Natalia Romina. Universidad Nacional de Tucumán (UNT). Facultad de Agronomía y Zootecnia. Cátedra Edafología; Argentina
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina
Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina
Fil: Colcombet, Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Montecarlo; Argentina
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC), Argentina
Fil: Lencinas, María Vanessa. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); Argentina
Fil: Rodríguez Souilla, J. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro Austral de Investigación Científica (CADIC); Argentina
Fil: Cellini, Juan Manuel. Universidad Nacional de la Plata (UNLP). Facultad de Ciencias Naturales y Museo. Laboratorio de Investigaciones en Maderas; Argentina
Fil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
Fil: Cosentino, Vanina Rosa Noemi. Universidad de Buenos Aires (UBA). Facultad de Agronomía. Cátedra de Fertilidad y Fertilizantes; Argentina
description Silvopastoral Systems (SPS) have been identified as an efficient land management strategy to increase the performance of animal and tree production, livestock welfare (Esquivel, 2017), and improve carbon (C) sequestration in soil and in trees to offset livestock emissions (Figueiredo et al., 2017). These systems are a type of livestock agroforestry, which associates trees and/or shrubs with pastures (Mosquera-Losada et al., 2006; Chará et al., 2020). The system comprises a woody component, which involves any type of tree, interacting with conventional components (herbaceous forage or pastures) under an integrated management system (Gándara et al., 2021). Trees provide timber, fruit, firewood, seeds, and shade generators (Luccerini et al., 2013). SPS are alternative management systems which both mitigate and adapt to climate change (Feliciano et al., 2018). SPS are a sustainable way of land management that has been both politically and economically promoted worldwide (CAP 2014–2020) as a tool to increase carbon sequestration in soils among other benefits that agroforestry provides (Mosquera-Losada et al., 2018). In SPS, there are both ecological and economic interactions between the different components. Thus, SPS are those that have been designed to improve beneficial–ecological interactions, which may be shown as improvement in yield per unit area, resource use efficiency, and/or enhancement in environmental issues. Silvopastoral advantages can be enumerated as the provision of multiple products (e.g. food, wood, fodder, mulch, medicinal plants) or services (e.g. maintenance of soil fertility, erosion control, microclimate improvement, biodiversity enhancement, watershed protection, reduction of fire risk, carbon sequestration) by the trees (Peri et al., 2016a; Mosquera-Losada et al., 2005). In some regions or areas, SPS are used according to the basic premise that these systems can be more biologically productive, profitable, and sustainable than forestry or animal production monocultures depending on the environment. The trees in SPS enhance nutrient uptake from the soil, which is then returning to the grass through the degradation of organic matter, improving both soil fertility and forage quality. The trees, furthermore, strengthen animal welfare due to their moderating effects on climate extremes (Dube et al., 2012; Peri, 2011).
publishDate 2025
dc.date.none.fl_str_mv 2025-11-22T22:55:57Z
2025-11-22T22:55:57Z
2025-09
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/24585
978-1-80146-719-3
http://dx.doi.org/10.19103/AS.2024.0141.12
url http://hdl.handle.net/20.500.12123/24585
http://dx.doi.org/10.19103/AS.2024.0141.12
identifier_str_mv 978-1-80146-719-3
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Burleigh Dodds Science
publisher.none.fl_str_mv Burleigh Dodds Science
dc.source.none.fl_str_mv Advances in temperate agroforestry / Edited by: Professor Maria Rosa Mosquera-Losada, Dr Ladislau Martin, Professor Anastasia Pantera, and Dr Allison Chatrchyan. Cambridge: Burleigh Dodds Science, 2025. p. 189-214
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1849949348018782208
score 13.011256