Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change

Autores
Moyano, Jaime; Dimarco, Romina Daniela; Paritsis, Juan; Peterson, Tess; Peltzer, Duane A.; Crawford, Kerri M.; McCary, Matthew A.; Davis, Kimberley T.; Pauchard, Aníbal; Nuñez, Martin Andrés
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.
EEA Bariloche
Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda.
Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: McCary, Matthew A. Rice University. Department of BioSciences; Estados Unidos
Fil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos.
Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; Chile
Fil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile.
Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fuente
Journal of Ecology : 1-12. (First published: 26 March 2024)
Materia
Ecosistema
Árboles
Organismos Nativos
Cambio Climático
Aforestación
Especie Invasiva
Ecosystems
Trees
Native Organisms
Climate Change
Afforestation
Invasive Species
Especies Nativas
Nivel de accesibilidad
acceso restringido
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/17271

id INTADig_07f5ef16fba73147822069d11b67fbae
oai_identifier_str oai:localhost:20.500.12123/17271
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate changeMoyano, JaimeDimarco, Romina DanielaParitsis, JuanPeterson, TessPeltzer, Duane A.Crawford, Kerri M.McCary, Matthew A.Davis, Kimberley T.Pauchard, AníbalNuñez, Martin AndrésEcosistemaÁrbolesOrganismos NativosCambio ClimáticoAforestaciónEspecie InvasivaEcosystemsTreesNative OrganismsClimate ChangeAfforestationInvasive SpeciesEspecies NativasNaturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.EEA BarilocheFil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda.Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: McCary, Matthew A. Rice University. Department of BioSciences; Estados UnidosFil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos.Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; ChileFil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile.Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados UnidosWiley2024-04-03T13:57:33Z2024-04-03T13:57:33Z2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17271https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.143000022-04771365-2745https://doi.org/10.1111/1365-2745.14300Journal of Ecology : 1-12. (First published: 26 March 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:26Zoai:localhost:20.500.12123/17271instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:26.759INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
title Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
spellingShingle Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
Moyano, Jaime
Ecosistema
Árboles
Organismos Nativos
Cambio Climático
Aforestación
Especie Invasiva
Ecosystems
Trees
Native Organisms
Climate Change
Afforestation
Invasive Species
Especies Nativas
title_short Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
title_full Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
title_fullStr Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
title_full_unstemmed Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
title_sort Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
dc.creator.none.fl_str_mv Moyano, Jaime
Dimarco, Romina Daniela
Paritsis, Juan
Peterson, Tess
Peltzer, Duane A.
Crawford, Kerri M.
McCary, Matthew A.
Davis, Kimberley T.
Pauchard, Aníbal
Nuñez, Martin Andrés
author Moyano, Jaime
author_facet Moyano, Jaime
Dimarco, Romina Daniela
Paritsis, Juan
Peterson, Tess
Peltzer, Duane A.
Crawford, Kerri M.
McCary, Matthew A.
Davis, Kimberley T.
Pauchard, Aníbal
Nuñez, Martin Andrés
author_role author
author2 Dimarco, Romina Daniela
Paritsis, Juan
Peterson, Tess
Peltzer, Duane A.
Crawford, Kerri M.
McCary, Matthew A.
Davis, Kimberley T.
Pauchard, Aníbal
Nuñez, Martin Andrés
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ecosistema
Árboles
Organismos Nativos
Cambio Climático
Aforestación
Especie Invasiva
Ecosystems
Trees
Native Organisms
Climate Change
Afforestation
Invasive Species
Especies Nativas
topic Ecosistema
Árboles
Organismos Nativos
Cambio Climático
Aforestación
Especie Invasiva
Ecosystems
Trees
Native Organisms
Climate Change
Afforestation
Invasive Species
Especies Nativas
dc.description.none.fl_txt_mv Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.
EEA Bariloche
Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda.
Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: McCary, Matthew A. Rice University. Department of BioSciences; Estados Unidos
Fil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos.
Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; Chile
Fil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile.
Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados Unidos
description Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-03T13:57:33Z
2024-04-03T13:57:33Z
2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/17271
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14300
0022-0477
1365-2745
https://doi.org/10.1111/1365-2745.14300
url http://hdl.handle.net/20.500.12123/17271
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14300
https://doi.org/10.1111/1365-2745.14300
identifier_str_mv 0022-0477
1365-2745
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Journal of Ecology : 1-12. (First published: 26 March 2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1844619186541690880
score 12.559606