Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change
- Autores
- Moyano, Jaime; Dimarco, Romina Daniela; Paritsis, Juan; Peterson, Tess; Peltzer, Duane A.; Crawford, Kerri M.; McCary, Matthew A.; Davis, Kimberley T.; Pauchard, Aníbal; Nuñez, Martin Andrés
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.
EEA Bariloche
Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina
Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda.
Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados Unidos
Fil: McCary, Matthew A. Rice University. Department of BioSciences; Estados Unidos
Fil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos.
Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; Chile
Fil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile.
Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina
Fil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados Unidos - Fuente
- Journal of Ecology : 1-12. (First published: 26 March 2024)
- Materia
-
Ecosistema
Árboles
Organismos Nativos
Cambio Climático
Aforestación
Especie Invasiva
Ecosystems
Trees
Native Organisms
Climate Change
Afforestation
Invasive Species
Especies Nativas - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/17271
Ver los metadatos del registro completo
id |
INTADig_07f5ef16fba73147822069d11b67fbae |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/17271 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate changeMoyano, JaimeDimarco, Romina DanielaParitsis, JuanPeterson, TessPeltzer, Duane A.Crawford, Kerri M.McCary, Matthew A.Davis, Kimberley T.Pauchard, AníbalNuñez, Martin AndrésEcosistemaÁrbolesOrganismos NativosCambio ClimáticoAforestaciónEspecie InvasivaEcosystemsTreesNative OrganismsClimate ChangeAfforestationInvasive SpeciesEspecies NativasNaturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts.EEA BarilocheFil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda.Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados UnidosFil: McCary, Matthew A. Rice University. Department of BioSciences; Estados UnidosFil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos.Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; ChileFil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile.Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados UnidosWiley2024-04-03T13:57:33Z2024-04-03T13:57:33Z2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/17271https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.143000022-04771365-2745https://doi.org/10.1111/1365-2745.14300Journal of Ecology : 1-12. (First published: 26 March 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:46:26Zoai:localhost:20.500.12123/17271instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:46:26.759INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
title |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
spellingShingle |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change Moyano, Jaime Ecosistema Árboles Organismos Nativos Cambio Climático Aforestación Especie Invasiva Ecosystems Trees Native Organisms Climate Change Afforestation Invasive Species Especies Nativas |
title_short |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
title_full |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
title_fullStr |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
title_full_unstemmed |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
title_sort |
Unintended consequences of planting native and non-native trees in treeless ecosystems to mitigate climate change |
dc.creator.none.fl_str_mv |
Moyano, Jaime Dimarco, Romina Daniela Paritsis, Juan Peterson, Tess Peltzer, Duane A. Crawford, Kerri M. McCary, Matthew A. Davis, Kimberley T. Pauchard, Aníbal Nuñez, Martin Andrés |
author |
Moyano, Jaime |
author_facet |
Moyano, Jaime Dimarco, Romina Daniela Paritsis, Juan Peterson, Tess Peltzer, Duane A. Crawford, Kerri M. McCary, Matthew A. Davis, Kimberley T. Pauchard, Aníbal Nuñez, Martin Andrés |
author_role |
author |
author2 |
Dimarco, Romina Daniela Paritsis, Juan Peterson, Tess Peltzer, Duane A. Crawford, Kerri M. McCary, Matthew A. Davis, Kimberley T. Pauchard, Aníbal Nuñez, Martin Andrés |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Ecosistema Árboles Organismos Nativos Cambio Climático Aforestación Especie Invasiva Ecosystems Trees Native Organisms Climate Change Afforestation Invasive Species Especies Nativas |
topic |
Ecosistema Árboles Organismos Nativos Cambio Climático Aforestación Especie Invasiva Ecosystems Trees Native Organisms Climate Change Afforestation Invasive Species Especies Nativas |
dc.description.none.fl_txt_mv |
Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts. EEA Bariloche Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Moyano, Jaime. Universidad Nacional del Comahue. Instituto de Investigación En Biodiversidad y Medioambiente. Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Dimarco, Romina D. University of Houston. Department of Biology and Biochemistry; Estados Unidos Fil: Dimarco, Romina Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de Ecología de Poblaciones de Insectos; Argentina Fil: Paritsis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina Fil: Paritsis, Juan. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina Fil: Peterson, Tess. University of Houston. Department of Biology and Biochemistry; Estados Unidos Fil: Peltzer, Duane A. Manaaki Whenua Landcare Research; Nueva Zelanda. Fil: Crawford, Kerri M. University of Houston. Department of Biology and Biochemistry; Estados Unidos Fil: McCary, Matthew A. Rice University. Department of BioSciences; Estados Unidos Fil: Davis, Kimberley T. USDA Forest Service. Rocky Mountain Research Station. Missoula Fire Sciences Laboratory; Estados Unidos. Fil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biológicas; Chile Fil: Pauchard, Anibal. Institute of Ecology and Biodiversity (IEB), Chile. Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina Fil: Nuñez, Martin Andres. Universidad Nacional del Comahue. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina Fil: Nuñez, Martin Andres. University of Houston. Department of Biology and Biochemistry; Estados Unidos |
description |
Naturally treeless ecosystems are being replaced by native and non-native trees worldwide, often through deliberate afforestation using forestry tree species. By introducing species having novel traits, such as relatively rapid growth, many afforestation efforts also produce numerous changes in ecosystems, at the landscape scale. Trees are considered critical for climate change mitigation; indeed, many current carbon sequestration strategies rely on trees. Planting trees or allowing trees to naturally colonize through range expansions can be seen as an ideal way to increase atmospheric carbon capture. For example, a snapshot approach may show that introducing trees into treeless ecosystems enhances aboveground accumulation of carbon, helping increase ecosystem carbon storage. However, considering other impacts such as reductions in soil carbon or albedo and increased fire severity (through increases in fuel loads and connectivity) reduces the effectiveness of afforestation strategies for climate change amelioration. Additional negative impacts of afforestation are also likely, such as the reduction of native biodiversity and productivity, substantial water yield losses, and changes in nutrient cycles, which can exacerbate other global change drivers. Further, tree invasions originating from afforestation can exacerbate these negative impacts. Synthesis. This review highlights that the positive and negative impacts of planting trees in naturally treeless ecosystems as a strategy to mitigate climate change are idiosyncratic, depending on the location where trees are introduced, the time period trees are allowed to grow, and risks of spread and impacts associated with specific tree species. Although planting trees can potentially be a tool to fight climate change, a greater consideration of their impacts is required to minimize the unexpected negative consequences of afforestation efforts. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-03T13:57:33Z 2024-04-03T13:57:33Z 2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/17271 https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14300 0022-0477 1365-2745 https://doi.org/10.1111/1365-2745.14300 |
url |
http://hdl.handle.net/20.500.12123/17271 https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.14300 https://doi.org/10.1111/1365-2745.14300 |
identifier_str_mv |
0022-0477 1365-2745 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
Journal of Ecology : 1-12. (First published: 26 March 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619186541690880 |
score |
12.559606 |