Design of on - farm precision experiments to estimate site - specific crop responses

Autores
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martín, Nicolás Federico
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
grafs., tbls.
Fuente
Agronomy journal
Vol.113, no.2
1366-1380
https://www.wiley.com/
Materia
EXPERIMENTAL DESIGNS
DATA ANALYSIS
DESIGN COMPARISONS
SOFTWARE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2021alesso

id FAUBA_a4c0348d28a70efecc6d8abecbafb15b
oai_identifier_str snrd:2021alesso
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Design of on - farm precision experiments to estimate site - specific crop responsesAlesso, Carlos AgustínCipriotti, Pablo ArielBollero, Germán AlbertoMartín, Nicolás FedericoEXPERIMENTAL DESIGNSDATA ANALYSISDESIGN COMPARISONSSOFTWAREFil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.grafs., tbls.2021articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1002/agj2.20572issn:1435-0645http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alessoAgronomy journalVol.113, no.21366-1380https://www.wiley.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:41:38Zsnrd:2021alessoinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:39.505FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Design of on - farm precision experiments to estimate site - specific crop responses
title Design of on - farm precision experiments to estimate site - specific crop responses
spellingShingle Design of on - farm precision experiments to estimate site - specific crop responses
Alesso, Carlos Agustín
EXPERIMENTAL DESIGNS
DATA ANALYSIS
DESIGN COMPARISONS
SOFTWARE
title_short Design of on - farm precision experiments to estimate site - specific crop responses
title_full Design of on - farm precision experiments to estimate site - specific crop responses
title_fullStr Design of on - farm precision experiments to estimate site - specific crop responses
title_full_unstemmed Design of on - farm precision experiments to estimate site - specific crop responses
title_sort Design of on - farm precision experiments to estimate site - specific crop responses
dc.creator.none.fl_str_mv Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martín, Nicolás Federico
author Alesso, Carlos Agustín
author_facet Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martín, Nicolás Federico
author_role author
author2 Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martín, Nicolás Federico
author2_role author
author
author
dc.subject.none.fl_str_mv EXPERIMENTAL DESIGNS
DATA ANALYSIS
DESIGN COMPARISONS
SOFTWARE
topic EXPERIMENTAL DESIGNS
DATA ANALYSIS
DESIGN COMPARISONS
SOFTWARE
dc.description.none.fl_txt_mv Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
grafs., tbls.
description Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1002/agj2.20572
issn:1435-0645
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alesso
identifier_str_mv doi:10.1002/agj2.20572
issn:1435-0645
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alesso
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Agronomy journal
Vol.113, no.2
1366-1380
https://www.wiley.com/
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618859679580160
score 13.070432