Design of on - farm precision experiments to estimate site - specific crop responses
- Autores
- Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martín, Nicolás Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.
Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.
Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
grafs., tbls. - Fuente
- Agronomy journal
Vol.113, no.2
1366-1380
https://www.wiley.com/ - Materia
-
EXPERIMENTAL DESIGNS
DATA ANALYSIS
DESIGN COMPARISONS
SOFTWARE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- acceso abierto
- Repositorio
- Institución
- Universidad de Buenos Aires. Facultad de Agronomía
- OAI Identificador
- snrd:2021alesso
Ver los metadatos del registro completo
id |
FAUBA_a4c0348d28a70efecc6d8abecbafb15b |
---|---|
oai_identifier_str |
snrd:2021alesso |
network_acronym_str |
FAUBA |
repository_id_str |
2729 |
network_name_str |
FAUBA Digital (UBA-FAUBA) |
spelling |
Design of on - farm precision experiments to estimate site - specific crop responsesAlesso, Carlos AgustínCipriotti, Pablo ArielBollero, Germán AlbertoMartín, Nicolás FedericoEXPERIMENTAL DESIGNSDATA ANALYSISDESIGN COMPARISONSSOFTWAREFil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina.Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA.Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.grafs., tbls.2021articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1002/agj2.20572issn:1435-0645http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alessoAgronomy journalVol.113, no.21366-1380https://www.wiley.com/reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:41:38Zsnrd:2021alessoinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:39.505FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse |
dc.title.none.fl_str_mv |
Design of on - farm precision experiments to estimate site - specific crop responses |
title |
Design of on - farm precision experiments to estimate site - specific crop responses |
spellingShingle |
Design of on - farm precision experiments to estimate site - specific crop responses Alesso, Carlos Agustín EXPERIMENTAL DESIGNS DATA ANALYSIS DESIGN COMPARISONS SOFTWARE |
title_short |
Design of on - farm precision experiments to estimate site - specific crop responses |
title_full |
Design of on - farm precision experiments to estimate site - specific crop responses |
title_fullStr |
Design of on - farm precision experiments to estimate site - specific crop responses |
title_full_unstemmed |
Design of on - farm precision experiments to estimate site - specific crop responses |
title_sort |
Design of on - farm precision experiments to estimate site - specific crop responses |
dc.creator.none.fl_str_mv |
Alesso, Carlos Agustín Cipriotti, Pablo Ariel Bollero, Germán Alberto Martín, Nicolás Federico |
author |
Alesso, Carlos Agustín |
author_facet |
Alesso, Carlos Agustín Cipriotti, Pablo Ariel Bollero, Germán Alberto Martín, Nicolás Federico |
author_role |
author |
author2 |
Cipriotti, Pablo Ariel Bollero, Germán Alberto Martín, Nicolás Federico |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
EXPERIMENTAL DESIGNS DATA ANALYSIS DESIGN COMPARISONS SOFTWARE |
topic |
EXPERIMENTAL DESIGNS DATA ANALYSIS DESIGN COMPARISONS SOFTWARE |
dc.description.none.fl_txt_mv |
Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina. Fil: Alesso, Carlos Agustín. CONICET - Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina. Fil: Alesso, Carlos Agustín. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA. Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. Fil: Cipriotti, Pablo Ariel. CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. Fil: Bollero, Germán Alberto. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA. Fil: Martín, Nicolás Federico. University of Illinois at Urbana-Champaign. Department of Crop Sciences. Urbana, IL. USA. Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers’ fields by locally estimating the regression coefficients. However, the effect of the experiment’s spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function’s spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios. grafs., tbls. |
description |
Fil: Alesso, Carlos Agustín. Universidad Nacional del Litoral (UNL). Facultad de Ciencias Agrarias. Instituto de Ciencias Agropecuarias del Litoral (ICiAgro). Esperanza, Santa Fe, Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
article info:eu-repo/semantics/article publishedVersion info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
doi:10.1002/agj2.20572 issn:1435-0645 http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alesso |
identifier_str_mv |
doi:10.1002/agj2.20572 issn:1435-0645 |
url |
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2021alesso |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess openAccess http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
openAccess http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4 |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Agronomy journal Vol.113, no.2 1366-1380 https://www.wiley.com/ reponame:FAUBA Digital (UBA-FAUBA) instname:Universidad de Buenos Aires. Facultad de Agronomía |
reponame_str |
FAUBA Digital (UBA-FAUBA) |
collection |
FAUBA Digital (UBA-FAUBA) |
instname_str |
Universidad de Buenos Aires. Facultad de Agronomía |
repository.name.fl_str_mv |
FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía |
repository.mail.fl_str_mv |
martino@agro.uba.ar;berasa@agro.uba.ar |
_version_ |
1844618859679580160 |
score |
13.070432 |