Design of on-farm precision experiments to estimate site-specific crop responses
- Autores
- Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; Argentina
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados Unidos
Fil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados Unidos - Materia
-
agricultura precisión
cultivos extensivos
diseño experimental
estadística espacial - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168208
Ver los metadatos del registro completo
id |
CONICETDig_d214fef9d519f97d53380f759358d3c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168208 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Design of on-farm precision experiments to estimate site-specific crop responsesAlesso, Carlos AgustínCipriotti, Pablo ArielBollero, Germán AlbertoMartin, Nicolas Federicoagricultura precisióncultivos extensivosdiseño experimentalestadística espacialhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; ArgentinaFil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados UnidosFil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados UnidosAmerican Society of Agronomy2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168208Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-13800002-1962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/agj2.20572info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:37Zoai:ri.conicet.gov.ar:11336/168208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:37.91CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Design of on-farm precision experiments to estimate site-specific crop responses |
title |
Design of on-farm precision experiments to estimate site-specific crop responses |
spellingShingle |
Design of on-farm precision experiments to estimate site-specific crop responses Alesso, Carlos Agustín agricultura precisión cultivos extensivos diseño experimental estadística espacial |
title_short |
Design of on-farm precision experiments to estimate site-specific crop responses |
title_full |
Design of on-farm precision experiments to estimate site-specific crop responses |
title_fullStr |
Design of on-farm precision experiments to estimate site-specific crop responses |
title_full_unstemmed |
Design of on-farm precision experiments to estimate site-specific crop responses |
title_sort |
Design of on-farm precision experiments to estimate site-specific crop responses |
dc.creator.none.fl_str_mv |
Alesso, Carlos Agustín Cipriotti, Pablo Ariel Bollero, Germán Alberto Martin, Nicolas Federico |
author |
Alesso, Carlos Agustín |
author_facet |
Alesso, Carlos Agustín Cipriotti, Pablo Ariel Bollero, Germán Alberto Martin, Nicolas Federico |
author_role |
author |
author2 |
Cipriotti, Pablo Ariel Bollero, Germán Alberto Martin, Nicolas Federico |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
agricultura precisión cultivos extensivos diseño experimental estadística espacial |
topic |
agricultura precisión cultivos extensivos diseño experimental estadística espacial |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios. Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; Argentina Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados Unidos Fil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados Unidos |
description |
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168208 Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-1380 0002-1962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168208 |
identifier_str_mv |
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-1380 0002-1962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/agj2.20572 info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20572 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society of Agronomy |
publisher.none.fl_str_mv |
American Society of Agronomy |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613372766584832 |
score |
13.070432 |