Design of on-farm precision experiments to estimate site-specific crop responses

Autores
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; Argentina
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados Unidos
Fil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados Unidos
Materia
agricultura precisión
cultivos extensivos
diseño experimental
estadística espacial
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168208

id CONICETDig_d214fef9d519f97d53380f759358d3c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/168208
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Design of on-farm precision experiments to estimate site-specific crop responsesAlesso, Carlos AgustínCipriotti, Pablo ArielBollero, Germán AlbertoMartin, Nicolas Federicoagricultura precisióncultivos extensivosdiseño experimentalestadística espacialhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; ArgentinaFil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados UnidosFil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados UnidosAmerican Society of Agronomy2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168208Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-13800002-1962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/agj2.20572info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:37Zoai:ri.conicet.gov.ar:11336/168208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:37.91CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Design of on-farm precision experiments to estimate site-specific crop responses
title Design of on-farm precision experiments to estimate site-specific crop responses
spellingShingle Design of on-farm precision experiments to estimate site-specific crop responses
Alesso, Carlos Agustín
agricultura precisión
cultivos extensivos
diseño experimental
estadística espacial
title_short Design of on-farm precision experiments to estimate site-specific crop responses
title_full Design of on-farm precision experiments to estimate site-specific crop responses
title_fullStr Design of on-farm precision experiments to estimate site-specific crop responses
title_full_unstemmed Design of on-farm precision experiments to estimate site-specific crop responses
title_sort Design of on-farm precision experiments to estimate site-specific crop responses
dc.creator.none.fl_str_mv Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martin, Nicolas Federico
author Alesso, Carlos Agustín
author_facet Alesso, Carlos Agustín
Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martin, Nicolas Federico
author_role author
author2 Cipriotti, Pablo Ariel
Bollero, Germán Alberto
Martin, Nicolas Federico
author2_role author
author
author
dc.subject.none.fl_str_mv agricultura precisión
cultivos extensivos
diseño experimental
estadística espacial
topic agricultura precisión
cultivos extensivos
diseño experimental
estadística espacial
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
Fil: Alesso, Carlos Agustín. University of Illinois. Urbana - Champaign; Estados Unidos. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Agropecuarias del Litoral. - Universidad Nacional del Litoral. Instituto de Ciencias Agropecuarias del Litoral.; Argentina
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Bollero, Germán Alberto. University of Illinois. Urbana - Champaign; Estados Unidos
Fil: Martin, Nicolas Federico. University of Illinois. Urbana - Champaign; Estados Unidos
description Site-specific prescriptions require estimating response functions to controllable inputs across the field. The methodology of applying geographically weighted regression to on-farm precision experimentation studies opens new opportunities to study site-specific responses to inputs in farmers' fields by locally estimating the regression coefficients. However, the effect of the experiment's spatial layout, such as plot dimensions and randomization, and spatial structure of the yield response on the experiment performance are yet to be studied. Detailed information about these effects is needed to improve trial design to detect site-specific responses. A simulation study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coefficients from a spatial variable response function were drawn from five random fields generated by unconditional Gaussian geostatistical simulations. Four levels of nitrogen were assigned to plots using 18 systematic and randomized chessboard designs with different plot sizes. Simulated yield data was obtained by combining the coefficients, treatment, and random error. The effect of spatial structure and the designs was assessed with measures of agreement between the true and estimated maps of regression coefficients. The ability to capture or approximate the true spatial pattern of the response function increased as the underlying response function's spatial structure increases. Overall differences in performance between design were observed across the spatial structure tested, mostly related to randomization and plot dimensions. In general best results were achieved by systematic designs with small or intermediate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under different spatial variability scenarios.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168208
Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-1380
0002-1962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168208
identifier_str_mv Alesso, Carlos Agustín; Cipriotti, Pablo Ariel; Bollero, Germán Alberto; Martin, Nicolas Federico; Design of on-farm precision experiments to estimate site-specific crop responses; American Society of Agronomy; Agronomy Journal; 113; 2; 3-2021; 1366-1380
0002-1962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/agj2.20572
info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20572
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society of Agronomy
publisher.none.fl_str_mv American Society of Agronomy
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613372766584832
score 13.070432