Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping

Autores
Winkel, Thierry; Aguirre, María Gabriela; Arizio, Carla Marcela; Aschero, Carlos Alberto; Babot, María del Pilar; Benoit, Laure; Burgarella, Concetta; Bertero, Héctor Daniel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Winkel, Thierry. Université de Montpellier. Université Paul-Valéry Montpellier UPVM3. École Pratique des Hautes Études EPHE. Centre d’ Écologie Fonctionnelle et Évolutive CEFE. Institut de Recherche pour le Développement IRD, CNRS. Montpellier, France.
Fil: Aguirre, María Gabriela. Universidad Nacional de Tucumán (FCN e IML, UNT). Facultad de Ciencias Naturales e Instituto Miguel Lillo. San Miguel de Tucumán, Argentina.
Fil: Arizio, Carla Marcela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos (CIRN). Hurlingham, Buenos Aires, Argentina.
Fil: Aschero, Carlos Alberto. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.
Fil: Babot, María del Pilar. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.
Fil: Benoit, Laure. Université de Montpellier. Centre d’ Écologie Fonctionnelle et Évolutive (CEFE). CNRS. Montpellier, France.
Fil: Burgarella, Concetta. UMR AGAP Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales CIRAD, INRA. Montpellier, France.
Fil: Bertero, Héctor Daniel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.
History and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.) from the cold and arid Andes of Argentina has allowed us to track changes and continuities in quinoa diversity over 18 centuries, by coupling genotyping of 157 ancient and modern seeds by 24 SSR markers with cluster and coalescence analyses. Cluster analyses revealed clear population patterns separating modern and ancient quinoas. Coalescence-based analyses revealed that genetic drift within a single population cannot explain genetic differentiation among ancient and modern quinoas. The hypothesis of a genetic bottleneck related to the Spanish Conquest also does not seem to apply at a local scale. Instead, the most likely scenario is the replacement of preexisting quinoa gene pools with new ones of lower genetic diversity. This process occurred at least twice in the last 18 centuries: first, between the 6th and 12th centuries— a time of agricultural intensification well before the Inka and Spanish conquests— and then between the 13th century and today—a period marked by farming marginalization in the late 19th century likely due to a severe multidecadal drought. While these processes of local gene pool replacement do not imply losses of genetic diversity at the metapopulation scale, they support the view that gene pool replacement linked to social and environmental changes can result from opposite agricultural trajectories.
mapas, grafs.
Fuente
Plos One
Vol.13, no.12
e0207519
https://journals.plos.org
Materia
AGRICULTURAL LAND
AGRICULTURAL WORKER
ALLELE
BIODIVERSITY
BOTTLE NECK
POPULATION
CHENOPODIUM QUINOA
DROUGHT
GENETIC DRIFT
GENETIC VARIABILITY
GENETIC VARIATION
GENOTYPE
NON HUMAN
PLANT GENE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2018winkel

id FAUBA_8f5479a9b69f2eed1413f8f0f1660574
oai_identifier_str snrd:2018winkel
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotypingWinkel, ThierryAguirre, María GabrielaArizio, Carla MarcelaAschero, Carlos AlbertoBabot, María del PilarBenoit, LaureBurgarella, ConcettaBertero, Héctor DanielAGRICULTURAL LANDAGRICULTURAL WORKERALLELEBIODIVERSITYBOTTLE NECKPOPULATIONCHENOPODIUM QUINOADROUGHTGENETIC DRIFTGENETIC VARIABILITYGENETIC VARIATIONGENOTYPENON HUMANPLANT GENEFil: Winkel, Thierry. Université de Montpellier. Université Paul-Valéry Montpellier UPVM3. École Pratique des Hautes Études EPHE. Centre d’ Écologie Fonctionnelle et Évolutive CEFE. Institut de Recherche pour le Développement IRD, CNRS. Montpellier, France.Fil: Aguirre, María Gabriela. Universidad Nacional de Tucumán (FCN e IML, UNT). Facultad de Ciencias Naturales e Instituto Miguel Lillo. San Miguel de Tucumán, Argentina.Fil: Arizio, Carla Marcela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos (CIRN). Hurlingham, Buenos Aires, Argentina.Fil: Aschero, Carlos Alberto. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.Fil: Babot, María del Pilar. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.Fil: Benoit, Laure. Université de Montpellier. Centre d’ Écologie Fonctionnelle et Évolutive (CEFE). CNRS. Montpellier, France.Fil: Burgarella, Concetta. UMR AGAP Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales CIRAD, INRA. Montpellier, France.Fil: Bertero, Héctor Daniel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.History and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.) from the cold and arid Andes of Argentina has allowed us to track changes and continuities in quinoa diversity over 18 centuries, by coupling genotyping of 157 ancient and modern seeds by 24 SSR markers with cluster and coalescence analyses. Cluster analyses revealed clear population patterns separating modern and ancient quinoas. Coalescence-based analyses revealed that genetic drift within a single population cannot explain genetic differentiation among ancient and modern quinoas. The hypothesis of a genetic bottleneck related to the Spanish Conquest also does not seem to apply at a local scale. Instead, the most likely scenario is the replacement of preexisting quinoa gene pools with new ones of lower genetic diversity. This process occurred at least twice in the last 18 centuries: first, between the 6th and 12th centuries— a time of agricultural intensification well before the Inka and Spanish conquests— and then between the 13th century and today—a period marked by farming marginalization in the late 19th century likely due to a severe multidecadal drought. While these processes of local gene pool replacement do not imply losses of genetic diversity at the metapopulation scale, they support the view that gene pool replacement linked to social and environmental changes can result from opposite agricultural trajectories.mapas, grafs.2018articleinfo:eu-repo/semantics/articlepublishedVersioninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfdoi:10.1371/journal.pone.0207519issn:1932-6203http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018winkelPlos OneVol.13, no.12e0207519https://journals.plos.orgreponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomíaenginfo:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section42025-09-29T13:41:50Zsnrd:2018winkelinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:50.826FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
title Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
spellingShingle Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
Winkel, Thierry
AGRICULTURAL LAND
AGRICULTURAL WORKER
ALLELE
BIODIVERSITY
BOTTLE NECK
POPULATION
CHENOPODIUM QUINOA
DROUGHT
GENETIC DRIFT
GENETIC VARIABILITY
GENETIC VARIATION
GENOTYPE
NON HUMAN
PLANT GENE
title_short Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
title_full Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
title_fullStr Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
title_full_unstemmed Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
title_sort Discontinuities in quinoa biodiversity in the dry Andes : an 18 - century perspective based on allelic genotyping
dc.creator.none.fl_str_mv Winkel, Thierry
Aguirre, María Gabriela
Arizio, Carla Marcela
Aschero, Carlos Alberto
Babot, María del Pilar
Benoit, Laure
Burgarella, Concetta
Bertero, Héctor Daniel
author Winkel, Thierry
author_facet Winkel, Thierry
Aguirre, María Gabriela
Arizio, Carla Marcela
Aschero, Carlos Alberto
Babot, María del Pilar
Benoit, Laure
Burgarella, Concetta
Bertero, Héctor Daniel
author_role author
author2 Aguirre, María Gabriela
Arizio, Carla Marcela
Aschero, Carlos Alberto
Babot, María del Pilar
Benoit, Laure
Burgarella, Concetta
Bertero, Héctor Daniel
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AGRICULTURAL LAND
AGRICULTURAL WORKER
ALLELE
BIODIVERSITY
BOTTLE NECK
POPULATION
CHENOPODIUM QUINOA
DROUGHT
GENETIC DRIFT
GENETIC VARIABILITY
GENETIC VARIATION
GENOTYPE
NON HUMAN
PLANT GENE
topic AGRICULTURAL LAND
AGRICULTURAL WORKER
ALLELE
BIODIVERSITY
BOTTLE NECK
POPULATION
CHENOPODIUM QUINOA
DROUGHT
GENETIC DRIFT
GENETIC VARIABILITY
GENETIC VARIATION
GENOTYPE
NON HUMAN
PLANT GENE
dc.description.none.fl_txt_mv Fil: Winkel, Thierry. Université de Montpellier. Université Paul-Valéry Montpellier UPVM3. École Pratique des Hautes Études EPHE. Centre d’ Écologie Fonctionnelle et Évolutive CEFE. Institut de Recherche pour le Développement IRD, CNRS. Montpellier, France.
Fil: Aguirre, María Gabriela. Universidad Nacional de Tucumán (FCN e IML, UNT). Facultad de Ciencias Naturales e Instituto Miguel Lillo. San Miguel de Tucumán, Argentina.
Fil: Arizio, Carla Marcela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos (CIRN). Hurlingham, Buenos Aires, Argentina.
Fil: Aschero, Carlos Alberto. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.
Fil: Babot, María del Pilar. CONICET - Instituto Superior de Estudios Sociales (ISES). San Miguel de Tucumán, Argentina.
Fil: Benoit, Laure. Université de Montpellier. Centre d’ Écologie Fonctionnelle et Évolutive (CEFE). CNRS. Montpellier, France.
Fil: Burgarella, Concetta. UMR AGAP Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales CIRAD, INRA. Montpellier, France.
Fil: Bertero, Héctor Daniel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.
History and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.) from the cold and arid Andes of Argentina has allowed us to track changes and continuities in quinoa diversity over 18 centuries, by coupling genotyping of 157 ancient and modern seeds by 24 SSR markers with cluster and coalescence analyses. Cluster analyses revealed clear population patterns separating modern and ancient quinoas. Coalescence-based analyses revealed that genetic drift within a single population cannot explain genetic differentiation among ancient and modern quinoas. The hypothesis of a genetic bottleneck related to the Spanish Conquest also does not seem to apply at a local scale. Instead, the most likely scenario is the replacement of preexisting quinoa gene pools with new ones of lower genetic diversity. This process occurred at least twice in the last 18 centuries: first, between the 6th and 12th centuries— a time of agricultural intensification well before the Inka and Spanish conquests— and then between the 13th century and today—a period marked by farming marginalization in the late 19th century likely due to a severe multidecadal drought. While these processes of local gene pool replacement do not imply losses of genetic diversity at the metapopulation scale, they support the view that gene pool replacement linked to social and environmental changes can result from opposite agricultural trajectories.
mapas, grafs.
description Fil: Winkel, Thierry. Université de Montpellier. Université Paul-Valéry Montpellier UPVM3. École Pratique des Hautes Études EPHE. Centre d’ Écologie Fonctionnelle et Évolutive CEFE. Institut de Recherche pour le Développement IRD, CNRS. Montpellier, France.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv article
info:eu-repo/semantics/article
publishedVersion
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv doi:10.1371/journal.pone.0207519
issn:1932-6203
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018winkel
identifier_str_mv doi:10.1371/journal.pone.0207519
issn:1932-6203
url http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2018winkel
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Plos One
Vol.13, no.12
e0207519
https://journals.plos.org
reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618862527512576
score 13.070432