Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos

Autores
Vaiman, Nicolás
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
tesis de maestría
Estado
versión aceptada
Colaborador/a o director/a de tesis
Ruyver, Roberto de
Durante, Martín
Descripción
Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.
Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Las estimaciones de rendimientos agrícolas son de gran importancia debido a que la producción de alimentos juega un papel fundamental en la seguridad alimentaria y en la economía de los países. En el pasado, las estimaciones de rendimiento se debían realizar a campo, con operaciones trabajosas y lentas, y se obtenían resultados poco precisos. Por este motivo, cada vez más trabajos apuntan a estimar el rendimiento mediante técnicas geo-informáticas. Considerando la disponibilidad de datos de libre acceso existen dos posibilidades para estimar los rendimientos: por un lado, se pueden utilizar datos de precipitaciones, y, por otro lado, se pueden utilizar datos provenientes de sensores remotos. El objetivo del trabajo fue determinar y comparar la capacidad de distintos índices (climáticos y espectrales) de estimar los rendimientos agrícolas a escala departamental en la provincia de Entre Ríos. En primera instancia se determinó la capacidad de las precipitaciones y el SPI (Standardized Precipitation Index) de 3 meses, ambos en distintos períodos de acumulación en el semestre cálido (octubre a marzo). Los modelos que mejor explicaron el rendimiento en maíz fueron los que incluyeron información de diciembre (tanto con precipitaciones como con SPI), con un menor error de predicción y un mayor coeficiente de determinación. En cambio, en soja, fueron aquellos que se basaron en la precipitación previa al período crítico y el SPI centrado en dicho período. Luego, en segunda instancia, se evaluó la capacidad de TRMM (Tropical Rainfall Measurement Mission) para estimar la precipitación en Entre Ríos. En un primer análisis a escala mensual, se comparó la estimación derivada de TRMM y de dos métodos de interpolación a partir de los datos de nueve estaciones meteorológicas convencionales (EMC) (cinco dentro y cuatro fuera de la provincia). En un segundo análisis para distintos períodos de acumulación inferiores al mes se utilizaron tres EMC dentro de la provincia. A escala mensual, la capacidad de estimar las precipitaciones resultó mejor con TRMM que con cualquiera de los dos métodos de interpolación. La estimación de precipitaciones mensuales mediante la ecuación con todos los datos agrupados de TRMM no resultó diferente de la estimación particular de cada EMC, lo que permite utilizar la ecuación de forma generalizada para toda la provincia. A escala menor a la mensual se observó que el ajuste aumenta con los días acumulados. Se estableció al período de acumulación de 15 días como el mínimo que no disminuye la precisión con respecto a períodos más largos. Por esto, los datos de TRMM acumulados cada 16 días (frecuencia de los productos MODIS) fueron utilizados en conjunto con otros índices espectrales en la instancia siguiente. En ésta tercera instancia, se determinó la capacidad de un conjunto de índices espectrales para estimar los rendimientos. Para esto, se utilizaron valores de reflectancia de distintas bandas del producto MOD09A1 y la temperatura de superficie del producto MOD11A2, ambos provenientes de MODIS. Los índices obtenidos (básicos y escalados cada 8 días, y combinados cada 16 días), fueron promediados en 8 períodos de tiempo ubicados en distintos estadíos fenológicos del ciclo de los cultivos. Los modelos más exactos para estimar rendimientos en soja y en maíz fueron aquellos cuyos índices habían sido escalados. En maíz, los mejores índices se obtuvieron al considerar sólo el período crítico. En cambio, para soja, los mejores modelos incluyeron al período crítico del cultivo y al ciclo completo. En general, los mejores resultados se obtuvieron al utilizar el NDWI y NDDI (derivado del NDWI). En última instancia, se compararon los índices climáticos y los derivados de sensores remotos en la estimación de rendimientos. En maíz, la mejor estimación con índices climáticos se obtuvo con el SPI de enero y febrero en el departamento Federal, con un RMSE de 820 kg.ha-1 (error relativo del 22%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período crítico en el departamento Villaguay, con un RMSE de 363 kg.ha-1 (error relativo del 8%). En soja, la mejor estimación con índices climáticos se obtuvo con el SPI de enero a marzo en Federación, con un RMSE de 245 kg.ha-1 (error relativo del 8%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período comprendido entre el 17 de enero y el 18 de febrero en Nogoyá, con un RMSE de 132 kg.ha-1 (error relativo del 5%). Los resultados del trabajo indican que las precipitaciones estimadas con TRMM podrían utilizarse para la mayoría de los posibles usos agronómicos. Además, se lograron estimaciones de rendimientos departamentales muy buenas mediante modelos provenientes de regresiones lineales simples. Tanto en maíz como en soja, las mejores estimaciones de rendimiento se lograron dos meses previos a la cosecha. Los modelos lineales obtenidos en este trabajo podrían ampliarse con más datos en años futuros o implementarse operativamente en su forma original. Estos modelos aportarían: 1) objetividad en las estimaciones, 2) adecuada anticipación en la estimación y 3) datos a nivel departamental.
85 p. : il., grafs.
Maestría en Meteorología Agrícola
Materia
CULTIVO
SOJA
MAIZ
SENSORES REMOTOS
CONDICIONES ATMOSFERICAS
FACTORES DE RENDIMIENTO
RENDIMIENTO DE CULTIVOS
MODELOS
TECNICAS DE PREDICCION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
acceso abierto
Repositorio
FAUBA Digital (UBA-FAUBA)
Institución
Universidad de Buenos Aires. Facultad de Agronomía
OAI Identificador
snrd:2018tesisvaimannicolas

id FAUBA_6b4f6645a1fe8c9355948594e19d2db2
oai_identifier_str snrd:2018tesisvaimannicolas
network_acronym_str FAUBA
repository_id_str 2729
network_name_str FAUBA Digital (UBA-FAUBA)
spelling Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre RíosVaiman, NicolásCULTIVOSOJAMAIZSENSORES REMOTOSCONDICIONES ATMOSFERICASFACTORES DE RENDIMIENTORENDIMIENTO DE CULTIVOSMODELOSTECNICAS DE PREDICCIONFil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Las estimaciones de rendimientos agrícolas son de gran importancia debido a que la producción de alimentos juega un papel fundamental en la seguridad alimentaria y en la economía de los países. En el pasado, las estimaciones de rendimiento se debían realizar a campo, con operaciones trabajosas y lentas, y se obtenían resultados poco precisos. Por este motivo, cada vez más trabajos apuntan a estimar el rendimiento mediante técnicas geo-informáticas. Considerando la disponibilidad de datos de libre acceso existen dos posibilidades para estimar los rendimientos: por un lado, se pueden utilizar datos de precipitaciones, y, por otro lado, se pueden utilizar datos provenientes de sensores remotos. El objetivo del trabajo fue determinar y comparar la capacidad de distintos índices (climáticos y espectrales) de estimar los rendimientos agrícolas a escala departamental en la provincia de Entre Ríos. En primera instancia se determinó la capacidad de las precipitaciones y el SPI (Standardized Precipitation Index) de 3 meses, ambos en distintos períodos de acumulación en el semestre cálido (octubre a marzo). Los modelos que mejor explicaron el rendimiento en maíz fueron los que incluyeron información de diciembre (tanto con precipitaciones como con SPI), con un menor error de predicción y un mayor coeficiente de determinación. En cambio, en soja, fueron aquellos que se basaron en la precipitación previa al período crítico y el SPI centrado en dicho período. Luego, en segunda instancia, se evaluó la capacidad de TRMM (Tropical Rainfall Measurement Mission) para estimar la precipitación en Entre Ríos. En un primer análisis a escala mensual, se comparó la estimación derivada de TRMM y de dos métodos de interpolación a partir de los datos de nueve estaciones meteorológicas convencionales (EMC) (cinco dentro y cuatro fuera de la provincia). En un segundo análisis para distintos períodos de acumulación inferiores al mes se utilizaron tres EMC dentro de la provincia. A escala mensual, la capacidad de estimar las precipitaciones resultó mejor con TRMM que con cualquiera de los dos métodos de interpolación. La estimación de precipitaciones mensuales mediante la ecuación con todos los datos agrupados de TRMM no resultó diferente de la estimación particular de cada EMC, lo que permite utilizar la ecuación de forma generalizada para toda la provincia. A escala menor a la mensual se observó que el ajuste aumenta con los días acumulados. Se estableció al período de acumulación de 15 días como el mínimo que no disminuye la precisión con respecto a períodos más largos. Por esto, los datos de TRMM acumulados cada 16 días (frecuencia de los productos MODIS) fueron utilizados en conjunto con otros índices espectrales en la instancia siguiente. En ésta tercera instancia, se determinó la capacidad de un conjunto de índices espectrales para estimar los rendimientos. Para esto, se utilizaron valores de reflectancia de distintas bandas del producto MOD09A1 y la temperatura de superficie del producto MOD11A2, ambos provenientes de MODIS. Los índices obtenidos (básicos y escalados cada 8 días, y combinados cada 16 días), fueron promediados en 8 períodos de tiempo ubicados en distintos estadíos fenológicos del ciclo de los cultivos. Los modelos más exactos para estimar rendimientos en soja y en maíz fueron aquellos cuyos índices habían sido escalados. En maíz, los mejores índices se obtuvieron al considerar sólo el período crítico. En cambio, para soja, los mejores modelos incluyeron al período crítico del cultivo y al ciclo completo. En general, los mejores resultados se obtuvieron al utilizar el NDWI y NDDI (derivado del NDWI). En última instancia, se compararon los índices climáticos y los derivados de sensores remotos en la estimación de rendimientos. En maíz, la mejor estimación con índices climáticos se obtuvo con el SPI de enero y febrero en el departamento Federal, con un RMSE de 820 kg.ha-1 (error relativo del 22%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período crítico en el departamento Villaguay, con un RMSE de 363 kg.ha-1 (error relativo del 8%). En soja, la mejor estimación con índices climáticos se obtuvo con el SPI de enero a marzo en Federación, con un RMSE de 245 kg.ha-1 (error relativo del 8%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período comprendido entre el 17 de enero y el 18 de febrero en Nogoyá, con un RMSE de 132 kg.ha-1 (error relativo del 5%). Los resultados del trabajo indican que las precipitaciones estimadas con TRMM podrían utilizarse para la mayoría de los posibles usos agronómicos. Además, se lograron estimaciones de rendimientos departamentales muy buenas mediante modelos provenientes de regresiones lineales simples. Tanto en maíz como en soja, las mejores estimaciones de rendimiento se lograron dos meses previos a la cosecha. Los modelos lineales obtenidos en este trabajo podrían ampliarse con más datos en años futuros o implementarse operativamente en su forma original. Estos modelos aportarían: 1) objetividad en las estimaciones, 2) adecuada anticipación en la estimación y 3) datos a nivel departamental.85 p. : il., grafs.Maestría en Meteorología AgrícolaUniversidad de Buenos Aires. Facultad de AgronomíaRuyver, Roberto deDurante, Martín2018masterThesisinfo:eu-repo/semantics/masterThesisacceptedVersioninfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:ar-repo/semantics/tesisDeMaestriaapplication/pdfhttp://ri.agro.uba.ar/greenstone3/library/collection/tesis/document/2018tesisvaimannicolasspa1001237Entre Ríos (province)info:eu-repo/semantics/openAccessopenAccesshttp://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4reponame:FAUBA Digital (UBA-FAUBA)instname:Universidad de Buenos Aires. Facultad de Agronomía2025-09-29T13:41:45Zsnrd:2018tesisvaimannicolasinstacron:UBA-FAUBAInstitucionalhttp://ri.agro.uba.ar/Universidad públicaNo correspondehttp://ri.agro.uba.ar/greenstone3/oaiserver?verb=ListSetsmartino@agro.uba.ar;berasa@agro.uba.ar ArgentinaNo correspondeNo correspondeNo correspondeopendoar:27292025-09-29 13:41:46.709FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomíafalse
dc.title.none.fl_str_mv Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
title Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
spellingShingle Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
Vaiman, Nicolás
CULTIVO
SOJA
MAIZ
SENSORES REMOTOS
CONDICIONES ATMOSFERICAS
FACTORES DE RENDIMIENTO
RENDIMIENTO DE CULTIVOS
MODELOS
TECNICAS DE PREDICCION
title_short Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
title_full Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
title_fullStr Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
title_full_unstemmed Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
title_sort Comparación de índices climáticos y espectrales en la estimación de rendimiento de maíz y soja a nivel departamental en Entre Ríos
dc.creator.none.fl_str_mv Vaiman, Nicolás
author Vaiman, Nicolás
author_facet Vaiman, Nicolás
author_role author
dc.contributor.none.fl_str_mv Ruyver, Roberto de
Durante, Martín
dc.subject.none.fl_str_mv CULTIVO
SOJA
MAIZ
SENSORES REMOTOS
CONDICIONES ATMOSFERICAS
FACTORES DE RENDIMIENTO
RENDIMIENTO DE CULTIVOS
MODELOS
TECNICAS DE PREDICCION
topic CULTIVO
SOJA
MAIZ
SENSORES REMOTOS
CONDICIONES ATMOSFERICAS
FACTORES DE RENDIMIENTO
RENDIMIENTO DE CULTIVOS
MODELOS
TECNICAS DE PREDICCION
dc.description.none.fl_txt_mv Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.
Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Las estimaciones de rendimientos agrícolas son de gran importancia debido a que la producción de alimentos juega un papel fundamental en la seguridad alimentaria y en la economía de los países. En el pasado, las estimaciones de rendimiento se debían realizar a campo, con operaciones trabajosas y lentas, y se obtenían resultados poco precisos. Por este motivo, cada vez más trabajos apuntan a estimar el rendimiento mediante técnicas geo-informáticas. Considerando la disponibilidad de datos de libre acceso existen dos posibilidades para estimar los rendimientos: por un lado, se pueden utilizar datos de precipitaciones, y, por otro lado, se pueden utilizar datos provenientes de sensores remotos. El objetivo del trabajo fue determinar y comparar la capacidad de distintos índices (climáticos y espectrales) de estimar los rendimientos agrícolas a escala departamental en la provincia de Entre Ríos. En primera instancia se determinó la capacidad de las precipitaciones y el SPI (Standardized Precipitation Index) de 3 meses, ambos en distintos períodos de acumulación en el semestre cálido (octubre a marzo). Los modelos que mejor explicaron el rendimiento en maíz fueron los que incluyeron información de diciembre (tanto con precipitaciones como con SPI), con un menor error de predicción y un mayor coeficiente de determinación. En cambio, en soja, fueron aquellos que se basaron en la precipitación previa al período crítico y el SPI centrado en dicho período. Luego, en segunda instancia, se evaluó la capacidad de TRMM (Tropical Rainfall Measurement Mission) para estimar la precipitación en Entre Ríos. En un primer análisis a escala mensual, se comparó la estimación derivada de TRMM y de dos métodos de interpolación a partir de los datos de nueve estaciones meteorológicas convencionales (EMC) (cinco dentro y cuatro fuera de la provincia). En un segundo análisis para distintos períodos de acumulación inferiores al mes se utilizaron tres EMC dentro de la provincia. A escala mensual, la capacidad de estimar las precipitaciones resultó mejor con TRMM que con cualquiera de los dos métodos de interpolación. La estimación de precipitaciones mensuales mediante la ecuación con todos los datos agrupados de TRMM no resultó diferente de la estimación particular de cada EMC, lo que permite utilizar la ecuación de forma generalizada para toda la provincia. A escala menor a la mensual se observó que el ajuste aumenta con los días acumulados. Se estableció al período de acumulación de 15 días como el mínimo que no disminuye la precisión con respecto a períodos más largos. Por esto, los datos de TRMM acumulados cada 16 días (frecuencia de los productos MODIS) fueron utilizados en conjunto con otros índices espectrales en la instancia siguiente. En ésta tercera instancia, se determinó la capacidad de un conjunto de índices espectrales para estimar los rendimientos. Para esto, se utilizaron valores de reflectancia de distintas bandas del producto MOD09A1 y la temperatura de superficie del producto MOD11A2, ambos provenientes de MODIS. Los índices obtenidos (básicos y escalados cada 8 días, y combinados cada 16 días), fueron promediados en 8 períodos de tiempo ubicados en distintos estadíos fenológicos del ciclo de los cultivos. Los modelos más exactos para estimar rendimientos en soja y en maíz fueron aquellos cuyos índices habían sido escalados. En maíz, los mejores índices se obtuvieron al considerar sólo el período crítico. En cambio, para soja, los mejores modelos incluyeron al período crítico del cultivo y al ciclo completo. En general, los mejores resultados se obtuvieron al utilizar el NDWI y NDDI (derivado del NDWI). En última instancia, se compararon los índices climáticos y los derivados de sensores remotos en la estimación de rendimientos. En maíz, la mejor estimación con índices climáticos se obtuvo con el SPI de enero y febrero en el departamento Federal, con un RMSE de 820 kg.ha-1 (error relativo del 22%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período crítico en el departamento Villaguay, con un RMSE de 363 kg.ha-1 (error relativo del 8%). En soja, la mejor estimación con índices climáticos se obtuvo con el SPI de enero a marzo en Federación, con un RMSE de 245 kg.ha-1 (error relativo del 8%). En cambio, la mejor estimación con índices espectrales se produjo con el Sc_NDWI_7 en el período comprendido entre el 17 de enero y el 18 de febrero en Nogoyá, con un RMSE de 132 kg.ha-1 (error relativo del 5%). Los resultados del trabajo indican que las precipitaciones estimadas con TRMM podrían utilizarse para la mayoría de los posibles usos agronómicos. Además, se lograron estimaciones de rendimientos departamentales muy buenas mediante modelos provenientes de regresiones lineales simples. Tanto en maíz como en soja, las mejores estimaciones de rendimiento se lograron dos meses previos a la cosecha. Los modelos lineales obtenidos en este trabajo podrían ampliarse con más datos en años futuros o implementarse operativamente en su forma original. Estos modelos aportarían: 1) objetividad en las estimaciones, 2) adecuada anticipación en la estimación y 3) datos a nivel departamental.
85 p. : il., grafs.
Maestría en Meteorología Agrícola
description Fil: Vaiman, Nicolás. Universidad de Buenos Aires. Facultad de Agronomía; Argentina.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv masterThesis
info:eu-repo/semantics/masterThesis
acceptedVersion
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_bdcc
info:ar-repo/semantics/tesisDeMaestria
format masterThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://ri.agro.uba.ar/greenstone3/library/collection/tesis/document/2018tesisvaimannicolas
url http://ri.agro.uba.ar/greenstone3/library/collection/tesis/document/2018tesisvaimannicolas
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
eu_rights_str_mv openAccess
rights_invalid_str_mv openAccess
http://ri.agro.uba.ar/greenstone3/library/page/biblioteca#section4
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv 1001237
Entre Ríos (province)
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Agronomía
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Agronomía
dc.source.none.fl_str_mv reponame:FAUBA Digital (UBA-FAUBA)
instname:Universidad de Buenos Aires. Facultad de Agronomía
reponame_str FAUBA Digital (UBA-FAUBA)
collection FAUBA Digital (UBA-FAUBA)
instname_str Universidad de Buenos Aires. Facultad de Agronomía
repository.name.fl_str_mv FAUBA Digital (UBA-FAUBA) - Universidad de Buenos Aires. Facultad de Agronomía
repository.mail.fl_str_mv martino@agro.uba.ar;berasa@agro.uba.ar
_version_ 1844618861361496064
score 13.070432