Fibers and Gleason parts for the maximal ideal space of Au(Bp )
- Autores
- Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Maestre, Manuel
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the early nineties, R. M. Aron, B. Cole, T. W. Gamelin and W. B. Johnson initiated the study of the maximal ideal space (spectrum) of Banach algebras of holomorphic functions defined on the open unit ball of an infinite dimensional complex Banach space. Within this framework, we investigate the fibers and Gleason parts of the spectrum of the algebra of holomorphic and uniformly continuous functions on the unit ball of p (1 ≤ p < ∞). We show that the inherent geometry of these spaces provides a fundamental ingredient for our results. We prove that whenever p ∈ N (p ≥ 2), the fiber of every z ∈ Bp contains a set of cardinal 2c such that any two elements of this set belong to different Gleason parts. For the case p = 1, we complete the known description of the fibers, showing that, for each z ∈ B 1 \S1 , the fiber over z is not a singleton. Also, we establish that different fibers over elements in S 1 cannot share Gleason parts.
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina
Fil: Maestre, Manuel. Universidad de Valencia; España - Materia
-
Algebras of holomorphic functions
Spectrum
Gleason parts
Fibers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265649
Ver los metadatos del registro completo
id |
CONICETDig_24092aca0dc9efb618fc8ce713667dd8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265649 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fibers and Gleason parts for the maximal ideal space of Au(Bp )Dimant, Veronica IsabelLassalle, Silvia BeatrizMaestre, ManuelAlgebras of holomorphic functionsSpectrumGleason partsFibershttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the early nineties, R. M. Aron, B. Cole, T. W. Gamelin and W. B. Johnson initiated the study of the maximal ideal space (spectrum) of Banach algebras of holomorphic functions defined on the open unit ball of an infinite dimensional complex Banach space. Within this framework, we investigate the fibers and Gleason parts of the spectrum of the algebra of holomorphic and uniformly continuous functions on the unit ball of p (1 ≤ p < ∞). We show that the inherent geometry of these spaces provides a fundamental ingredient for our results. We prove that whenever p ∈ N (p ≥ 2), the fiber of every z ∈ Bp contains a set of cardinal 2c such that any two elements of this set belong to different Gleason parts. For the case p = 1, we complete the known description of the fibers, showing that, for each z ∈ B 1 \S1 , the fiber over z is not a singleton. Also, we establish that different fibers over elements in S 1 cannot share Gleason parts.Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; ArgentinaFil: Maestre, Manuel. Universidad de Valencia; EspañaSpringer2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265649Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Maestre, Manuel; Fibers and Gleason parts for the maximal ideal space of Au(Bp ); Springer; Banach Journal Of Mathematical Analysis; 19; 4; 1-2025; 1-211735-8787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-024-00388-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-024-00388-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:18:55Zoai:ri.conicet.gov.ar:11336/265649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:18:55.417CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
title |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
spellingShingle |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) Dimant, Veronica Isabel Algebras of holomorphic functions Spectrum Gleason parts Fibers |
title_short |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
title_full |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
title_fullStr |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
title_full_unstemmed |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
title_sort |
Fibers and Gleason parts for the maximal ideal space of Au(Bp ) |
dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Lassalle, Silvia Beatriz Maestre, Manuel |
author |
Dimant, Veronica Isabel |
author_facet |
Dimant, Veronica Isabel Lassalle, Silvia Beatriz Maestre, Manuel |
author_role |
author |
author2 |
Lassalle, Silvia Beatriz Maestre, Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Algebras of holomorphic functions Spectrum Gleason parts Fibers |
topic |
Algebras of holomorphic functions Spectrum Gleason parts Fibers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the early nineties, R. M. Aron, B. Cole, T. W. Gamelin and W. B. Johnson initiated the study of the maximal ideal space (spectrum) of Banach algebras of holomorphic functions defined on the open unit ball of an infinite dimensional complex Banach space. Within this framework, we investigate the fibers and Gleason parts of the spectrum of the algebra of holomorphic and uniformly continuous functions on the unit ball of p (1 ≤ p < ∞). We show that the inherent geometry of these spaces provides a fundamental ingredient for our results. We prove that whenever p ∈ N (p ≥ 2), the fiber of every z ∈ Bp contains a set of cardinal 2c such that any two elements of this set belong to different Gleason parts. For the case p = 1, we complete the known description of the fibers, showing that, for each z ∈ B 1 \S1 , the fiber over z is not a singleton. Also, we establish that different fibers over elements in S 1 cannot share Gleason parts. Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina Fil: Maestre, Manuel. Universidad de Valencia; España |
description |
In the early nineties, R. M. Aron, B. Cole, T. W. Gamelin and W. B. Johnson initiated the study of the maximal ideal space (spectrum) of Banach algebras of holomorphic functions defined on the open unit ball of an infinite dimensional complex Banach space. Within this framework, we investigate the fibers and Gleason parts of the spectrum of the algebra of holomorphic and uniformly continuous functions on the unit ball of p (1 ≤ p < ∞). We show that the inherent geometry of these spaces provides a fundamental ingredient for our results. We prove that whenever p ∈ N (p ≥ 2), the fiber of every z ∈ Bp contains a set of cardinal 2c such that any two elements of this set belong to different Gleason parts. For the case p = 1, we complete the known description of the fibers, showing that, for each z ∈ B 1 \S1 , the fiber over z is not a singleton. Also, we establish that different fibers over elements in S 1 cannot share Gleason parts. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265649 Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Maestre, Manuel; Fibers and Gleason parts for the maximal ideal space of Au(Bp ); Springer; Banach Journal Of Mathematical Analysis; 19; 4; 1-2025; 1-21 1735-8787 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265649 |
identifier_str_mv |
Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Maestre, Manuel; Fibers and Gleason parts for the maximal ideal space of Au(Bp ); Springer; Banach Journal Of Mathematical Analysis; 19; 4; 1-2025; 1-21 1735-8787 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-024-00388-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-024-00388-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083338172891136 |
score |
13.22299 |