An effective power quality classifier using wavelet transform and support vector machines

Autores
de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.
Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bhowmik, S.. Nexant; Estados Unidos
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Complex Disturbance Detection And Classification
Power Quality
Support Vector Machine
Wavelet Transform
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50134

id CONICETDig_fe2c611075b72d535771a803e439cd56
oai_identifier_str oai:ri.conicet.gov.ar:11336/50134
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An effective power quality classifier using wavelet transform and support vector machinesde Yong, David MarceloBhowmik, S.Magnago, FernandoComplex Disturbance Detection And ClassificationPower QualitySupport Vector MachineWavelet Transformhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bhowmik, S.. Nexant; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50134de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-60810957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.04.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415002328info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:26Zoai:ri.conicet.gov.ar:11336/50134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:26.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An effective power quality classifier using wavelet transform and support vector machines
title An effective power quality classifier using wavelet transform and support vector machines
spellingShingle An effective power quality classifier using wavelet transform and support vector machines
de Yong, David Marcelo
Complex Disturbance Detection And Classification
Power Quality
Support Vector Machine
Wavelet Transform
title_short An effective power quality classifier using wavelet transform and support vector machines
title_full An effective power quality classifier using wavelet transform and support vector machines
title_fullStr An effective power quality classifier using wavelet transform and support vector machines
title_full_unstemmed An effective power quality classifier using wavelet transform and support vector machines
title_sort An effective power quality classifier using wavelet transform and support vector machines
dc.creator.none.fl_str_mv de Yong, David Marcelo
Bhowmik, S.
Magnago, Fernando
author de Yong, David Marcelo
author_facet de Yong, David Marcelo
Bhowmik, S.
Magnago, Fernando
author_role author
author2 Bhowmik, S.
Magnago, Fernando
author2_role author
author
dc.subject.none.fl_str_mv Complex Disturbance Detection And Classification
Power Quality
Support Vector Machine
Wavelet Transform
topic Complex Disturbance Detection And Classification
Power Quality
Support Vector Machine
Wavelet Transform
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.
Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bhowmik, S.. Nexant; Estados Unidos
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50134
de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-6081
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50134
identifier_str_mv de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-6081
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.04.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415002328
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083381569257472
score 13.22299