An effective power quality classifier using wavelet transform and support vector machines
- Autores
- de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.
Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bhowmik, S.. Nexant; Estados Unidos
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Complex Disturbance Detection And Classification
Power Quality
Support Vector Machine
Wavelet Transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50134
Ver los metadatos del registro completo
id |
CONICETDig_fe2c611075b72d535771a803e439cd56 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50134 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An effective power quality classifier using wavelet transform and support vector machinesde Yong, David MarceloBhowmik, S.Magnago, FernandoComplex Disturbance Detection And ClassificationPower QualitySupport Vector MachineWavelet Transformhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bhowmik, S.. Nexant; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50134de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-60810957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.04.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415002328info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:26Zoai:ri.conicet.gov.ar:11336/50134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:26.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An effective power quality classifier using wavelet transform and support vector machines |
title |
An effective power quality classifier using wavelet transform and support vector machines |
spellingShingle |
An effective power quality classifier using wavelet transform and support vector machines de Yong, David Marcelo Complex Disturbance Detection And Classification Power Quality Support Vector Machine Wavelet Transform |
title_short |
An effective power quality classifier using wavelet transform and support vector machines |
title_full |
An effective power quality classifier using wavelet transform and support vector machines |
title_fullStr |
An effective power quality classifier using wavelet transform and support vector machines |
title_full_unstemmed |
An effective power quality classifier using wavelet transform and support vector machines |
title_sort |
An effective power quality classifier using wavelet transform and support vector machines |
dc.creator.none.fl_str_mv |
de Yong, David Marcelo Bhowmik, S. Magnago, Fernando |
author |
de Yong, David Marcelo |
author_facet |
de Yong, David Marcelo Bhowmik, S. Magnago, Fernando |
author_role |
author |
author2 |
Bhowmik, S. Magnago, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Disturbance Detection And Classification Power Quality Support Vector Machine Wavelet Transform |
topic |
Complex Disturbance Detection And Classification Power Quality Support Vector Machine Wavelet Transform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient. Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bhowmik, S.. Nexant; Estados Unidos Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto; Argentina. Nexant; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we propose a method based on a combination of binary classifiers which are optimized for those special cases where the real signals contain a multitude of events within the analyzed temporal window. These type of events are known as complex events. The proposed Power Quality (PQ) classifier is based on Wavelet Transforms (WT) and Support Vector Machines (SVM). The method uses a One vs. One multiclass SVM. We propose a novel method which is simple, easy to train, and can be implemented with low computational cost. The proposed algorithm consists of a set of simple binary SVM classifiers. Each SVM node is trained separately allowing them to be parallelized. The training stage is performed using single events, however due to the structure of the SVM methodology selected, it allows the system to detect complex events. Tests and training were performed using real complex signals and the results show the proposed methodology to be highly efficient. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50134 de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-6081 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50134 |
identifier_str_mv |
de Yong, David Marcelo; Bhowmik, S.; Magnago, Fernando; An effective power quality classifier using wavelet transform and support vector machines; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 42; 15-16; 9-2015; 6075-6081 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2015.04.002 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417415002328 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083381569257472 |
score |
13.22299 |