Optimized complex power quality classifier using one vs. rest support vector machine
- Autores
- de Yong, David Marcelo; Bhowmik, Sudipto; Magnago, Fernando
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.
Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Bhowmik, Sudipto. Nexant Inc; Estados Unidos
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
Complex Power Quality
Pattern Recognition
Support Vector Machine
Wavelet Transform - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80557
Ver los metadatos del registro completo
id |
CONICETDig_b8d9841b8c221dfecc22981829590e8a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80557 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimized complex power quality classifier using one vs. rest support vector machinede Yong, David MarceloBhowmik, SudiptoMagnago, FernandoComplex Power QualityPattern RecognitionSupport Vector MachineWavelet Transformhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bhowmik, Sudipto. Nexant Inc; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaScientific Research Publishing2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80557de Yong, David Marcelo; Bhowmik, Sudipto; Magnago, Fernando; Optimized complex power quality classifier using one vs. rest support vector machine; Scientific Research Publishing; Energy and Power Engineering; 09; 10; 9-2017; 568-5871947-38181947-3818CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/paperinformation.aspx?paperid=79011info:eu-repo/semantics/altIdentifier/doi/10.4236/epe.2017.910040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:08:56Zoai:ri.conicet.gov.ar:11336/80557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:08:56.94CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimized complex power quality classifier using one vs. rest support vector machine |
title |
Optimized complex power quality classifier using one vs. rest support vector machine |
spellingShingle |
Optimized complex power quality classifier using one vs. rest support vector machine de Yong, David Marcelo Complex Power Quality Pattern Recognition Support Vector Machine Wavelet Transform |
title_short |
Optimized complex power quality classifier using one vs. rest support vector machine |
title_full |
Optimized complex power quality classifier using one vs. rest support vector machine |
title_fullStr |
Optimized complex power quality classifier using one vs. rest support vector machine |
title_full_unstemmed |
Optimized complex power quality classifier using one vs. rest support vector machine |
title_sort |
Optimized complex power quality classifier using one vs. rest support vector machine |
dc.creator.none.fl_str_mv |
de Yong, David Marcelo Bhowmik, Sudipto Magnago, Fernando |
author |
de Yong, David Marcelo |
author_facet |
de Yong, David Marcelo Bhowmik, Sudipto Magnago, Fernando |
author_role |
author |
author2 |
Bhowmik, Sudipto Magnago, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Power Quality Pattern Recognition Support Vector Machine Wavelet Transform |
topic |
Complex Power Quality Pattern Recognition Support Vector Machine Wavelet Transform |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances. Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Bhowmik, Sudipto. Nexant Inc; Estados Unidos Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80557 de Yong, David Marcelo; Bhowmik, Sudipto; Magnago, Fernando; Optimized complex power quality classifier using one vs. rest support vector machine; Scientific Research Publishing; Energy and Power Engineering; 09; 10; 9-2017; 568-587 1947-3818 1947-3818 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80557 |
identifier_str_mv |
de Yong, David Marcelo; Bhowmik, Sudipto; Magnago, Fernando; Optimized complex power quality classifier using one vs. rest support vector machine; Scientific Research Publishing; Energy and Power Engineering; 09; 10; 9-2017; 568-587 1947-3818 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.scirp.org/journal/paperinformation.aspx?paperid=79011 info:eu-repo/semantics/altIdentifier/doi/10.4236/epe.2017.910040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
publisher.none.fl_str_mv |
Scientific Research Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083236724211712 |
score |
13.22299 |