Nonstationary regression with support vector machines
- Autores
- Uzal, Lucas César; Grinblat, Guillermo Luis; Granitto, Pablo Miguel; Verdes, Pablo Fabian
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we introduce a method for data analysis in nonstationary environments: time-adaptive support vector regression (TA-SVR). The proposed approach extends a previous development that was limited to classification problems. Focusing our study on time series applications, we show that TA-SVR can improve the accuracy of several aspects of nonstationary data analysis, namely the tasks of modelling and prediction, input relevance estimation, and reconstruction of a hidden forcing profile.
Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
Regression
Support vector machine
Nonstationary problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4802
Ver los metadatos del registro completo
id |
CONICETDig_3af94115320dcf030ff0898752de411c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4802 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonstationary regression with support vector machinesUzal, Lucas CésarGrinblat, Guillermo LuisGranitto, Pablo MiguelVerdes, Pablo FabianRegressionSupport vector machineNonstationary problemshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work, we introduce a method for data analysis in nonstationary environments: time-adaptive support vector regression (TA-SVR). The proposed approach extends a previous development that was limited to classification problems. Focusing our study on time series applications, we show that TA-SVR can improve the accuracy of several aspects of nonstationary data analysis, namely the tasks of modelling and prediction, input relevance estimation, and reconstruction of a hidden forcing profile.Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaSpringer2014-10-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4802Uzal, Lucas César; Grinblat, Guillermo Luis; Granitto, Pablo Miguel; Verdes, Pablo Fabian; Nonstationary regression with support vector machines; Springer; Neural Computing And Applications; 26; 3; 7-10-2014; 641-6490941-0643enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00521-014-1742-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-014-1742-6info:eu-repo/semantics/altIdentifier/issn/0941-0643info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:28:54Zoai:ri.conicet.gov.ar:11336/4802instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:28:55.163CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonstationary regression with support vector machines |
title |
Nonstationary regression with support vector machines |
spellingShingle |
Nonstationary regression with support vector machines Uzal, Lucas César Regression Support vector machine Nonstationary problems |
title_short |
Nonstationary regression with support vector machines |
title_full |
Nonstationary regression with support vector machines |
title_fullStr |
Nonstationary regression with support vector machines |
title_full_unstemmed |
Nonstationary regression with support vector machines |
title_sort |
Nonstationary regression with support vector machines |
dc.creator.none.fl_str_mv |
Uzal, Lucas César Grinblat, Guillermo Luis Granitto, Pablo Miguel Verdes, Pablo Fabian |
author |
Uzal, Lucas César |
author_facet |
Uzal, Lucas César Grinblat, Guillermo Luis Granitto, Pablo Miguel Verdes, Pablo Fabian |
author_role |
author |
author2 |
Grinblat, Guillermo Luis Granitto, Pablo Miguel Verdes, Pablo Fabian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Regression Support vector machine Nonstationary problems |
topic |
Regression Support vector machine Nonstationary problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, we introduce a method for data analysis in nonstationary environments: time-adaptive support vector regression (TA-SVR). The proposed approach extends a previous development that was limited to classification problems. Focusing our study on time series applications, we show that TA-SVR can improve the accuracy of several aspects of nonstationary data analysis, namely the tasks of modelling and prediction, input relevance estimation, and reconstruction of a hidden forcing profile. Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
In this work, we introduce a method for data analysis in nonstationary environments: time-adaptive support vector regression (TA-SVR). The proposed approach extends a previous development that was limited to classification problems. Focusing our study on time series applications, we show that TA-SVR can improve the accuracy of several aspects of nonstationary data analysis, namely the tasks of modelling and prediction, input relevance estimation, and reconstruction of a hidden forcing profile. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4802 Uzal, Lucas César; Grinblat, Guillermo Luis; Granitto, Pablo Miguel; Verdes, Pablo Fabian; Nonstationary regression with support vector machines; Springer; Neural Computing And Applications; 26; 3; 7-10-2014; 641-649 0941-0643 |
url |
http://hdl.handle.net/11336/4802 |
identifier_str_mv |
Uzal, Lucas César; Grinblat, Guillermo Luis; Granitto, Pablo Miguel; Verdes, Pablo Fabian; Nonstationary regression with support vector machines; Springer; Neural Computing And Applications; 26; 3; 7-10-2014; 641-649 0941-0643 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00521-014-1742-6 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-014-1742-6 info:eu-repo/semantics/altIdentifier/issn/0941-0643 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083428951261184 |
score |
13.22299 |