Abrupt change detection with One-Class Time-Adaptive Support Vector Machines
- Autores
- Grinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods.
Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina - Materia
-
ABRUPT CHANGE DETECTION
ONE CLASS CLASSIFICATION
SUPPORT VECTOR MACHINE - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3196
Ver los metadatos del registro completo
id |
CONICETDig_b5d0f39aa9f20138808c924821c1402f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3196 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Abrupt change detection with One-Class Time-Adaptive Support Vector MachinesGrinblat, Guillermo LuisUzal, Lucas CésarGranitto, Pablo MiguelABRUPT CHANGE DETECTIONONE CLASS CLASSIFICATIONSUPPORT VECTOR MACHINEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods.Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; ArgentinaElsevier2013-12-15info:eu-repo/date/embargoEnd/2016-01-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3196Grinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel; Abrupt change detection with One-Class Time-Adaptive Support Vector Machines; Elsevier; Expert Systems with Applications; 40; 18; 15-12-2013; 7242-72490957-4174enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2013.06.074info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417413004739info:eu-repo/semantics/altIdentifier/issn/0957-4174info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:56Zoai:ri.conicet.gov.ar:11336/3196instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:56.942CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
title |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
spellingShingle |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines Grinblat, Guillermo Luis ABRUPT CHANGE DETECTION ONE CLASS CLASSIFICATION SUPPORT VECTOR MACHINE |
title_short |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
title_full |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
title_fullStr |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
title_full_unstemmed |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
title_sort |
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines |
dc.creator.none.fl_str_mv |
Grinblat, Guillermo Luis Uzal, Lucas César Granitto, Pablo Miguel |
author |
Grinblat, Guillermo Luis |
author_facet |
Grinblat, Guillermo Luis Uzal, Lucas César Granitto, Pablo Miguel |
author_role |
author |
author2 |
Uzal, Lucas César Granitto, Pablo Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ABRUPT CHANGE DETECTION ONE CLASS CLASSIFICATION SUPPORT VECTOR MACHINE |
topic |
ABRUPT CHANGE DETECTION ONE CLASS CLASSIFICATION SUPPORT VECTOR MACHINE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods. Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina |
description |
We recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-15 info:eu-repo/date/embargoEnd/2016-01-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3196 Grinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel; Abrupt change detection with One-Class Time-Adaptive Support Vector Machines; Elsevier; Expert Systems with Applications; 40; 18; 15-12-2013; 7242-7249 0957-4174 |
url |
http://hdl.handle.net/11336/3196 |
identifier_str_mv |
Grinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel; Abrupt change detection with One-Class Time-Adaptive Support Vector Machines; Elsevier; Expert Systems with Applications; 40; 18; 15-12-2013; 7242-7249 0957-4174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2013.06.074 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417413004739 info:eu-repo/semantics/altIdentifier/issn/0957-4174 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614041024069632 |
score |
13.070432 |