Representations of Super Yang-Mills Algebras
- Autores
- Herscovich Ramoneda, Estanislao Benito
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Yang-Mills
Orbit Method
Representation Theory
Homology Theory
Lie Superalgebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21139
Ver los metadatos del registro completo
id |
CONICETDig_fdfcd3df6a56b9b0b5ccaaa3ef1a30bb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21139 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Representations of Super Yang-Mills AlgebrasHerscovich Ramoneda, Estanislao BenitoYang-MillsOrbit MethodRepresentation TheoryHomology TheoryLie Superalgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21139Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-8200010-3616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-012-1648-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00220-012-1648-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.2753info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:22Zoai:ri.conicet.gov.ar:11336/21139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:22.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Representations of Super Yang-Mills Algebras |
title |
Representations of Super Yang-Mills Algebras |
spellingShingle |
Representations of Super Yang-Mills Algebras Herscovich Ramoneda, Estanislao Benito Yang-Mills Orbit Method Representation Theory Homology Theory Lie Superalgebras |
title_short |
Representations of Super Yang-Mills Algebras |
title_full |
Representations of Super Yang-Mills Algebras |
title_fullStr |
Representations of Super Yang-Mills Algebras |
title_full_unstemmed |
Representations of Super Yang-Mills Algebras |
title_sort |
Representations of Super Yang-Mills Algebras |
dc.creator.none.fl_str_mv |
Herscovich Ramoneda, Estanislao Benito |
author |
Herscovich Ramoneda, Estanislao Benito |
author_facet |
Herscovich Ramoneda, Estanislao Benito |
author_role |
author |
dc.subject.none.fl_str_mv |
Yang-Mills Orbit Method Representation Theory Homology Theory Lie Superalgebras |
topic |
Yang-Mills Orbit Method Representation Theory Homology Theory Lie Superalgebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras. Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21139 Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-820 0010-3616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21139 |
identifier_str_mv |
Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-820 0010-3616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-012-1648-z info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00220-012-1648-z info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.2753 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980521169125376 |
score |
12.993085 |