Representations of Super Yang-Mills Algebras

Autores
Herscovich Ramoneda, Estanislao Benito
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Yang-Mills
Orbit Method
Representation Theory
Homology Theory
Lie Superalgebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21139

id CONICETDig_fdfcd3df6a56b9b0b5ccaaa3ef1a30bb
oai_identifier_str oai:ri.conicet.gov.ar:11336/21139
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Representations of Super Yang-Mills AlgebrasHerscovich Ramoneda, Estanislao BenitoYang-MillsOrbit MethodRepresentation TheoryHomology TheoryLie Superalgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21139Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-8200010-3616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-012-1648-zinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00220-012-1648-zinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.2753info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:22Zoai:ri.conicet.gov.ar:11336/21139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:22.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Representations of Super Yang-Mills Algebras
title Representations of Super Yang-Mills Algebras
spellingShingle Representations of Super Yang-Mills Algebras
Herscovich Ramoneda, Estanislao Benito
Yang-Mills
Orbit Method
Representation Theory
Homology Theory
Lie Superalgebras
title_short Representations of Super Yang-Mills Algebras
title_full Representations of Super Yang-Mills Algebras
title_fullStr Representations of Super Yang-Mills Algebras
title_full_unstemmed Representations of Super Yang-Mills Algebras
title_sort Representations of Super Yang-Mills Algebras
dc.creator.none.fl_str_mv Herscovich Ramoneda, Estanislao Benito
author Herscovich Ramoneda, Estanislao Benito
author_facet Herscovich Ramoneda, Estanislao Benito
author_role author
dc.subject.none.fl_str_mv Yang-Mills
Orbit Method
Representation Theory
Homology Theory
Lie Superalgebras
topic Yang-Mills
Orbit Method
Representation Theory
Homology Theory
Lie Superalgebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
Fil: Herscovich Ramoneda, Estanislao Benito. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras Cliffq (k)⊗ Ap(k), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21139
Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-820
0010-3616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21139
identifier_str_mv Herscovich Ramoneda, Estanislao Benito; Representations of Super Yang-Mills Algebras; Springer; Communications In Mathematical Physics; 320; 3; 12-2012; 783-820
0010-3616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00220-012-1648-z
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00220-012-1648-z
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1103.2753
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980521169125376
score 12.993085