Some remarks on representations of Yang-Mills algebras

Autores
Herscovich Ramoneda, Estanislao Benito
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.
Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Yang-Mills
Representation theory
Gauge theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18877

id CONICETDig_91f2201ad3d257d9c5687b4370b8fda2
oai_identifier_str oai:ri.conicet.gov.ar:11336/18877
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some remarks on representations of Yang-Mills algebrasHerscovich Ramoneda, Estanislao BenitoYang-MillsRepresentation theoryGauge theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaAmerican Institute of Physics2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18877Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 0117020022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905857info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4905857info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.7028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:53Zoai:ri.conicet.gov.ar:11336/18877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:54.144CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some remarks on representations of Yang-Mills algebras
title Some remarks on representations of Yang-Mills algebras
spellingShingle Some remarks on representations of Yang-Mills algebras
Herscovich Ramoneda, Estanislao Benito
Yang-Mills
Representation theory
Gauge theory
title_short Some remarks on representations of Yang-Mills algebras
title_full Some remarks on representations of Yang-Mills algebras
title_fullStr Some remarks on representations of Yang-Mills algebras
title_full_unstemmed Some remarks on representations of Yang-Mills algebras
title_sort Some remarks on representations of Yang-Mills algebras
dc.creator.none.fl_str_mv Herscovich Ramoneda, Estanislao Benito
author Herscovich Ramoneda, Estanislao Benito
author_facet Herscovich Ramoneda, Estanislao Benito
author_role author
dc.subject.none.fl_str_mv Yang-Mills
Representation theory
Gauge theory
topic Yang-Mills
Representation theory
Gauge theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.
Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18877
Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 011702
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18877
identifier_str_mv Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 011702
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905857
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4905857
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.7028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613045823733760
score 13.070432