Some remarks on representations of Yang-Mills algebras
- Autores
- Herscovich Ramoneda, Estanislao Benito
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.
Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Yang-Mills
Representation theory
Gauge theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18877
Ver los metadatos del registro completo
id |
CONICETDig_91f2201ad3d257d9c5687b4370b8fda2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18877 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Some remarks on representations of Yang-Mills algebrasHerscovich Ramoneda, Estanislao BenitoYang-MillsRepresentation theoryGauge theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image.Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaAmerican Institute of Physics2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18877Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 0117020022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905857info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4905857info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.7028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:53Zoai:ri.conicet.gov.ar:11336/18877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:54.144CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Some remarks on representations of Yang-Mills algebras |
title |
Some remarks on representations of Yang-Mills algebras |
spellingShingle |
Some remarks on representations of Yang-Mills algebras Herscovich Ramoneda, Estanislao Benito Yang-Mills Representation theory Gauge theory |
title_short |
Some remarks on representations of Yang-Mills algebras |
title_full |
Some remarks on representations of Yang-Mills algebras |
title_fullStr |
Some remarks on representations of Yang-Mills algebras |
title_full_unstemmed |
Some remarks on representations of Yang-Mills algebras |
title_sort |
Some remarks on representations of Yang-Mills algebras |
dc.creator.none.fl_str_mv |
Herscovich Ramoneda, Estanislao Benito |
author |
Herscovich Ramoneda, Estanislao Benito |
author_facet |
Herscovich Ramoneda, Estanislao Benito |
author_role |
author |
dc.subject.none.fl_str_mv |
Yang-Mills Representation theory Gauge theory |
topic |
Yang-Mills Representation theory Gauge theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image. Fil: Herscovich Ramoneda, Estanislao Benito. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
In this article we present some probably unexpected (in our opinion) properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra ym(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra, and even any affine Kac-Moody algebra is a quotient of ym(n), for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [4], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from ym(3) to sl(2, k) has in fact solvable image. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18877 Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 011702 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18877 |
identifier_str_mv |
Herscovich Ramoneda, Estanislao Benito; Some remarks on representations of Yang-Mills algebras; American Institute of Physics; Journal Of Mathematical Physics; 56; 1; 12-2014; 1-6; 011702 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4905857 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4905857 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.7028 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613045823733760 |
score |
13.070432 |