The structure of reconstructed flows in latent spaces
- Autores
- Uribarri, Gonzalo; Mindlin, Bernardo Gabriel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the case that the topological structure of the flow is preserved.
Fil: Uribarri, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
neural networks
autoencoders
nonlinear dynamics
chaos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146082
Ver los metadatos del registro completo
id |
CONICETDig_4e8f6f2747cd99f45f18972da1aa292e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146082 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The structure of reconstructed flows in latent spacesUribarri, GonzaloMindlin, Bernardo Gabrielneural networksautoencodersnonlinear dynamicschaoshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the case that the topological structure of the flow is preserved.Fil: Uribarri, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Institute of Physics2020-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146082Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; The structure of reconstructed flows in latent spaces; American Institute of Physics; Chaos; 30; 9; 9-2020; 1-91054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0013714info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:43:15Zoai:ri.conicet.gov.ar:11336/146082instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:43:16.227CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The structure of reconstructed flows in latent spaces |
title |
The structure of reconstructed flows in latent spaces |
spellingShingle |
The structure of reconstructed flows in latent spaces Uribarri, Gonzalo neural networks autoencoders nonlinear dynamics chaos |
title_short |
The structure of reconstructed flows in latent spaces |
title_full |
The structure of reconstructed flows in latent spaces |
title_fullStr |
The structure of reconstructed flows in latent spaces |
title_full_unstemmed |
The structure of reconstructed flows in latent spaces |
title_sort |
The structure of reconstructed flows in latent spaces |
dc.creator.none.fl_str_mv |
Uribarri, Gonzalo Mindlin, Bernardo Gabriel |
author |
Uribarri, Gonzalo |
author_facet |
Uribarri, Gonzalo Mindlin, Bernardo Gabriel |
author_role |
author |
author2 |
Mindlin, Bernardo Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
neural networks autoencoders nonlinear dynamics chaos |
topic |
neural networks autoencoders nonlinear dynamics chaos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the case that the topological structure of the flow is preserved. Fil: Uribarri, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the case that the topological structure of the flow is preserved. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146082 Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; The structure of reconstructed flows in latent spaces; American Institute of Physics; Chaos; 30; 9; 9-2020; 1-9 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146082 |
identifier_str_mv |
Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; The structure of reconstructed flows in latent spaces; American Institute of Physics; Chaos; 30; 9; 9-2020; 1-9 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0013714 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083538567299072 |
score |
13.22299 |