Memory effects induce structure in social networks with activity-driven agents
- Autores
- Medus, A. D.; Dorso, Claudio Oscar
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.
Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Stochastic Processes
Growth Processes
Network Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17927
Ver los metadatos del registro completo
id |
CONICETDig_25e981b2fcb23b2bb1a57ba489c6e400 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17927 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Memory effects induce structure in social networks with activity-driven agentsMedus, A. D.Dorso, Claudio OscarStochastic ProcessesGrowth ProcessesNetwork Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIop Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17927Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-231742-5468enginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/09/P09009info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09009info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.3496info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:04Zoai:ri.conicet.gov.ar:11336/17927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:04.734CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Memory effects induce structure in social networks with activity-driven agents |
title |
Memory effects induce structure in social networks with activity-driven agents |
spellingShingle |
Memory effects induce structure in social networks with activity-driven agents Medus, A. D. Stochastic Processes Growth Processes Network Dynamics |
title_short |
Memory effects induce structure in social networks with activity-driven agents |
title_full |
Memory effects induce structure in social networks with activity-driven agents |
title_fullStr |
Memory effects induce structure in social networks with activity-driven agents |
title_full_unstemmed |
Memory effects induce structure in social networks with activity-driven agents |
title_sort |
Memory effects induce structure in social networks with activity-driven agents |
dc.creator.none.fl_str_mv |
Medus, A. D. Dorso, Claudio Oscar |
author |
Medus, A. D. |
author_facet |
Medus, A. D. Dorso, Claudio Oscar |
author_role |
author |
author2 |
Dorso, Claudio Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Stochastic Processes Growth Processes Network Dynamics |
topic |
Stochastic Processes Growth Processes Network Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network. Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17927 Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-23 1742-5468 |
url |
http://hdl.handle.net/11336/17927 |
identifier_str_mv |
Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-23 1742-5468 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/09/P09009 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09009 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.3496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980932802314240 |
score |
12.993085 |