Memory effects induce structure in social networks with activity-driven agents

Autores
Medus, A. D.; Dorso, Claudio Oscar
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.
Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Stochastic Processes
Growth Processes
Network Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17927

id CONICETDig_25e981b2fcb23b2bb1a57ba489c6e400
oai_identifier_str oai:ri.conicet.gov.ar:11336/17927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Memory effects induce structure in social networks with activity-driven agentsMedus, A. D.Dorso, Claudio OscarStochastic ProcessesGrowth ProcessesNetwork Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIop Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17927Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-231742-5468enginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/09/P09009info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09009info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.3496info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:04Zoai:ri.conicet.gov.ar:11336/17927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:04.734CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Memory effects induce structure in social networks with activity-driven agents
title Memory effects induce structure in social networks with activity-driven agents
spellingShingle Memory effects induce structure in social networks with activity-driven agents
Medus, A. D.
Stochastic Processes
Growth Processes
Network Dynamics
title_short Memory effects induce structure in social networks with activity-driven agents
title_full Memory effects induce structure in social networks with activity-driven agents
title_fullStr Memory effects induce structure in social networks with activity-driven agents
title_full_unstemmed Memory effects induce structure in social networks with activity-driven agents
title_sort Memory effects induce structure in social networks with activity-driven agents
dc.creator.none.fl_str_mv Medus, A. D.
Dorso, Claudio Oscar
author Medus, A. D.
author_facet Medus, A. D.
Dorso, Claudio Oscar
author_role author
author2 Dorso, Claudio Oscar
author2_role author
dc.subject.none.fl_str_mv Stochastic Processes
Growth Processes
Network Dynamics
topic Stochastic Processes
Growth Processes
Network Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.
Fil: Medus, A. D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Activity-driven modelling has recently been proposed as an alternative growth mechanism for time varying networks,displaying power-law degree distribution in time-aggregated representation. This approach assumes memoryless agents developing random connections with total disregard of their previous contacts. Thus, such an assumption leads to time-aggregated random networks that do not reproduce the positive degree-degree correlation and high clustering coefficient widely observed in real social networks. In this paper, we aim to study the incidence of the agents’ long-term memory on the emergence of new social ties. To this end, we propose a dynamical network model assuming heterogeneous activity for agents, together with a triadic-closure step as main connectivity mechanism. We show that this simple mechanism provides some of the fundamental topological features expected for real social networks in their time-aggregated picture. We derive analytical results and perform extensive numerical simulations in regimes with and without population growth. Finally, we present an illustrative comparison with two case studies, one comprising faceto-face encounters in a closed gathering, while the other one corresponding to social friendship ties from an online social network.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17927
Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-23
1742-5468
url http://hdl.handle.net/11336/17927
identifier_str_mv Medus, A. D.; Dorso, Claudio Oscar; Memory effects induce structure in social networks with activity-driven agents; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-23
1742-5468
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/09/P09009
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09009
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1312.3496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980932802314240
score 12.993085