Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences
- Autores
- Bussandri, Diego; Osán, Tristán Martín
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call extended quantum Csiszár distances. In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension.
Fil: Bussandri, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
CSISZÁR DIVERGENCES
DISTINGUISHABILITY
HELLINGER DISTANCE
JENSEN–SHANNON DIVERGENCE
QUANTUM METRICS
TRACE DISTANCE
TRIANGULAR DISCRIMINATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226303
Ver los metadatos del registro completo
id |
CONICETDig_fcf4f15423495d62592537e1b99bbeaf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226303 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum Distance Measures Based upon Classical Symmetric Csiszár DivergencesBussandri, DiegoOsán, Tristán MartínCSISZÁR DIVERGENCESDISTINGUISHABILITYHELLINGER DISTANCEJENSEN–SHANNON DIVERGENCEQUANTUM METRICSTRACE DISTANCETRIANGULAR DISCRIMINATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call extended quantum Csiszár distances. In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension.Fil: Bussandri, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaMolecular Diversity Preservation International2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226303Bussandri, Diego; Osán, Tristán Martín; Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences; Molecular Diversity Preservation International; Entropy; 25; 6; 6-2023; 1-161099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/6/912info:eu-repo/semantics/altIdentifier/doi/10.3390/e25060912info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:55Zoai:ri.conicet.gov.ar:11336/226303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:55.943CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
title |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
spellingShingle |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences Bussandri, Diego CSISZÁR DIVERGENCES DISTINGUISHABILITY HELLINGER DISTANCE JENSEN–SHANNON DIVERGENCE QUANTUM METRICS TRACE DISTANCE TRIANGULAR DISCRIMINATION |
title_short |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
title_full |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
title_fullStr |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
title_full_unstemmed |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
title_sort |
Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences |
dc.creator.none.fl_str_mv |
Bussandri, Diego Osán, Tristán Martín |
author |
Bussandri, Diego |
author_facet |
Bussandri, Diego Osán, Tristán Martín |
author_role |
author |
author2 |
Osán, Tristán Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
CSISZÁR DIVERGENCES DISTINGUISHABILITY HELLINGER DISTANCE JENSEN–SHANNON DIVERGENCE QUANTUM METRICS TRACE DISTANCE TRIANGULAR DISCRIMINATION |
topic |
CSISZÁR DIVERGENCES DISTINGUISHABILITY HELLINGER DISTANCE JENSEN–SHANNON DIVERGENCE QUANTUM METRICS TRACE DISTANCE TRIANGULAR DISCRIMINATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call extended quantum Csiszár distances. In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension. Fil: Bussandri, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Osán, Tristán Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call extended quantum Csiszár distances. In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226303 Bussandri, Diego; Osán, Tristán Martín; Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences; Molecular Diversity Preservation International; Entropy; 25; 6; 6-2023; 1-16 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226303 |
identifier_str_mv |
Bussandri, Diego; Osán, Tristán Martín; Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences; Molecular Diversity Preservation International; Entropy; 25; 6; 6-2023; 1-16 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/6/912 info:eu-repo/semantics/altIdentifier/doi/10.3390/e25060912 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613621747810304 |
score |
13.070432 |