Symmetric implication zroupoids and weak associative laws
- Autores
- Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos - Materia
-
IDENTITY OF BOL–MOUFANG TYPE
SEMILATTICE WITH LEAST ELEMENT 0
SYMMETRIC IMPLICATION ZROUPOID
WEAK ASSOCIATIVE LAW - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92788
Ver los metadatos del registro completo
id |
CONICETDig_fced5f96c8a15fa8e101fad34238350f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92788 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Symmetric implication zroupoids and weak associative lawsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.IDENTITY OF BOL–MOUFANG TYPESEMILATTICE WITH LEAST ELEMENT 0SYMMETRIC IMPLICATION ZROUPOIDWEAK ASSOCIATIVE LAWhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92788Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-68121472-76431433-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-018-03701-winfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-03701-winfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10408info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:28:08Zoai:ri.conicet.gov.ar:11336/92788instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:28:08.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Symmetric implication zroupoids and weak associative laws |
title |
Symmetric implication zroupoids and weak associative laws |
spellingShingle |
Symmetric implication zroupoids and weak associative laws Cornejo, Juan Manuel IDENTITY OF BOL–MOUFANG TYPE SEMILATTICE WITH LEAST ELEMENT 0 SYMMETRIC IMPLICATION ZROUPOID WEAK ASSOCIATIVE LAW |
title_short |
Symmetric implication zroupoids and weak associative laws |
title_full |
Symmetric implication zroupoids and weak associative laws |
title_fullStr |
Symmetric implication zroupoids and weak associative laws |
title_full_unstemmed |
Symmetric implication zroupoids and weak associative laws |
title_sort |
Symmetric implication zroupoids and weak associative laws |
dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author |
Cornejo, Juan Manuel |
author_facet |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author_role |
author |
author2 |
Sankappanavar, Hanamantagouda P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
IDENTITY OF BOL–MOUFANG TYPE SEMILATTICE WITH LEAST ELEMENT 0 SYMMETRIC IMPLICATION ZROUPOID WEAK ASSOCIATIVE LAW |
topic |
IDENTITY OF BOL–MOUFANG TYPE SEMILATTICE WITH LEAST ELEMENT 0 SYMMETRIC IMPLICATION ZROUPOID WEAK ASSOCIATIVE LAW |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4. Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos |
description |
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92788 Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812 1472-7643 1433-7479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92788 |
identifier_str_mv |
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812 1472-7643 1433-7479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-018-03701-w info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-03701-w info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10408 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082743187800064 |
score |
13.22299 |