Symmetric implication zroupoids and weak associative laws

Autores
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
Materia
IDENTITY OF BOL–MOUFANG TYPE
SEMILATTICE WITH LEAST ELEMENT 0
SYMMETRIC IMPLICATION ZROUPOID
WEAK ASSOCIATIVE LAW
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92788

id CONICETDig_fced5f96c8a15fa8e101fad34238350f
oai_identifier_str oai:ri.conicet.gov.ar:11336/92788
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Symmetric implication zroupoids and weak associative lawsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.IDENTITY OF BOL–MOUFANG TYPESEMILATTICE WITH LEAST ELEMENT 0SYMMETRIC IMPLICATION ZROUPOIDWEAK ASSOCIATIVE LAWhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosSpringer2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92788Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-68121472-76431433-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-018-03701-winfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-03701-winfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10408info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:28:08Zoai:ri.conicet.gov.ar:11336/92788instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:28:08.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Symmetric implication zroupoids and weak associative laws
title Symmetric implication zroupoids and weak associative laws
spellingShingle Symmetric implication zroupoids and weak associative laws
Cornejo, Juan Manuel
IDENTITY OF BOL–MOUFANG TYPE
SEMILATTICE WITH LEAST ELEMENT 0
SYMMETRIC IMPLICATION ZROUPOID
WEAK ASSOCIATIVE LAW
title_short Symmetric implication zroupoids and weak associative laws
title_full Symmetric implication zroupoids and weak associative laws
title_fullStr Symmetric implication zroupoids and weak associative laws
title_full_unstemmed Symmetric implication zroupoids and weak associative laws
title_sort Symmetric implication zroupoids and weak associative laws
dc.creator.none.fl_str_mv Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author Cornejo, Juan Manuel
author_facet Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author_role author
author2 Sankappanavar, Hanamantagouda P.
author2_role author
dc.subject.none.fl_str_mv IDENTITY OF BOL–MOUFANG TYPE
SEMILATTICE WITH LEAST ELEMENT 0
SYMMETRIC IMPLICATION ZROUPOID
WEAK ASSOCIATIVE LAW
topic IDENTITY OF BOL–MOUFANG TYPE
SEMILATTICE WITH LEAST ELEMENT 0
SYMMETRIC IMPLICATION ZROUPOID
WEAK ASSOCIATIVE LAW
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
description An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈((z′→x)→(y→z)′)′ and 0 ′ ′≈ 0 , where x′: = x→ 0. An implication zroupoid is symmetric if it satisfies: x′ ′≈ x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. We began a systematic analysis of weak associative laws (or identities) of length ≤ 4 in Cornejo and Sankappanavar (Soft Comput 22(13):4319–4333, 2018a. https://doi.org/10.1007/s00500-017-2869-z), by examining the identities of Bol–Moufang type, in the context of the variety S. In this paper, we complete the analysis by investigating the rest of the weak associative laws of length ≤ 4 relative to S. We show that, of the (possible) 155 subvarieties of S defined by the weak associative laws of length ≤ 4 , there are exactly 6 distinct ones. We also give an explicit description of the poset of the (distinct) subvarieties of S defined by weak associative laws of length ≤ 4.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92788
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812
1472-7643
1433-7479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92788
identifier_str_mv Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Symmetric implication zroupoids and weak associative laws; Springer; Soft Computing - (Print); 23; 16; 8-2019; 6797-6812
1472-7643
1433-7479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-018-03701-w
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-018-03701-w
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10408
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082743187800064
score 13.22299