On derived algebras and subvarieties of implication zroupoids

Autores
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 2012, the second author introduced and studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) the variety I of algebras, called implication zroupoids, that generalize De Morgan algebras. An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′ ′≈ 0 , where x′: = x→ 0. The present authors devoted the papers, Cornejo and Sankappanavar (Alegbra Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151, 2016c. doi:10.1007/s00500-015-1950-8), to the investigation of the structure of the lattice of subvarieties of I, and to making further contributions to the theory of implication zroupoids. This paper investigates the structure of the derived algebras Am: = ⟨ A, ∧ , 0 ⟩ and Amj: = ⟨ A, ∧ , ∨ , 0 ⟩ of A∈ I, where x∧y:=(x→y′)′ and x∨y:=(x′∧y as well as the lattice of subvarieties of I. The varieties I2 , 0, RD, SRD, C, CP, A, MC, and CLD are defined relative to I, respectively, by: (I2 , 0) x′ ′≈ x, (RD) (x→ y) → z≈ (x→ z) → (y→ z) , (SRD) (x→ y) → z≈ (z→ x) → (y→ z) , (C) x→ y≈ y→ x, (CP) x→ y′≈ y→ x′, (A) (x→ y) → z≈ x→ (y→ z) , (MC) x∧ y≈ y∧ x, (CLD) x→ (y→ z) ≈ (x→ z) → (y→ x). The purpose of this paper is two-fold. Firstly, we show that, for each A∈ I, Am is a semigroup. From this result, we deduce that, for A∈ I2 , 0∩ MC, the derived algebra Amj is a distributive bisemilattice and is also a Birkhoff system. Secondly, we show that CLD⊂ SRD⊂ RD and C⊂CP∩A∩MC∩CLD, both of which are much stronger results than were announced in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012).
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
Materia
Birkhoff System
Derived Algebras
Distributive Bisemilattice
Implication Zroupoid
Left Distributive Law
Right Distributive Law
Semigroup
Subvarieties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60697

id CONICETDig_e97bd3de12d9dbed7e2f9f06f3d887e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/60697
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On derived algebras and subvarieties of implication zroupoidsCornejo, Juan ManuelSankappanavar, Hanamantagouda P.Birkhoff SystemDerived AlgebrasDistributive BisemilatticeImplication ZroupoidLeft Distributive LawRight Distributive LawSemigroupSubvarietieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 2012, the second author introduced and studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) the variety I of algebras, called implication zroupoids, that generalize De Morgan algebras. An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′ ′≈ 0 , where x′: = x→ 0. The present authors devoted the papers, Cornejo and Sankappanavar (Alegbra Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151, 2016c. doi:10.1007/s00500-015-1950-8), to the investigation of the structure of the lattice of subvarieties of I, and to making further contributions to the theory of implication zroupoids. This paper investigates the structure of the derived algebras Am: = ⟨ A, ∧ , 0 ⟩ and Amj: = ⟨ A, ∧ , ∨ , 0 ⟩ of A∈ I, where x∧y:=(x→y′)′ and x∨y:=(x′∧y as well as the lattice of subvarieties of I. The varieties I2 , 0, RD, SRD, C, CP, A, MC, and CLD are defined relative to I, respectively, by: (I2 , 0) x′ ′≈ x, (RD) (x→ y) → z≈ (x→ z) → (y→ z) , (SRD) (x→ y) → z≈ (z→ x) → (y→ z) , (C) x→ y≈ y→ x, (CP) x→ y′≈ y→ x′, (A) (x→ y) → z≈ x→ (y→ z) , (MC) x∧ y≈ y∧ x, (CLD) x→ (y→ z) ≈ (x→ z) → (y→ x). The purpose of this paper is two-fold. Firstly, we show that, for each A∈ I, Am is a semigroup. From this result, we deduce that, for A∈ I2 , 0∩ MC, the derived algebra Amj is a distributive bisemilattice and is also a Birkhoff system. Secondly, we show that CLD⊂ SRD⊂ RD and C⊂CP∩A∩MC∩CLD, both of which are much stronger results than were announced in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012).Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosSpringer Verlag Berlín2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60697Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On derived algebras and subvarieties of implication zroupoids; Springer Verlag Berlín; Soft Computing - (Print); 21; 23; 1-12-2017; 6963-69821472-76431433-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-016-2421-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-016-2421-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:22Zoai:ri.conicet.gov.ar:11336/60697instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:22.518CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On derived algebras and subvarieties of implication zroupoids
title On derived algebras and subvarieties of implication zroupoids
spellingShingle On derived algebras and subvarieties of implication zroupoids
Cornejo, Juan Manuel
Birkhoff System
Derived Algebras
Distributive Bisemilattice
Implication Zroupoid
Left Distributive Law
Right Distributive Law
Semigroup
Subvarieties
title_short On derived algebras and subvarieties of implication zroupoids
title_full On derived algebras and subvarieties of implication zroupoids
title_fullStr On derived algebras and subvarieties of implication zroupoids
title_full_unstemmed On derived algebras and subvarieties of implication zroupoids
title_sort On derived algebras and subvarieties of implication zroupoids
dc.creator.none.fl_str_mv Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author Cornejo, Juan Manuel
author_facet Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author_role author
author2 Sankappanavar, Hanamantagouda P.
author2_role author
dc.subject.none.fl_str_mv Birkhoff System
Derived Algebras
Distributive Bisemilattice
Implication Zroupoid
Left Distributive Law
Right Distributive Law
Semigroup
Subvarieties
topic Birkhoff System
Derived Algebras
Distributive Bisemilattice
Implication Zroupoid
Left Distributive Law
Right Distributive Law
Semigroup
Subvarieties
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In 2012, the second author introduced and studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) the variety I of algebras, called implication zroupoids, that generalize De Morgan algebras. An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′ ′≈ 0 , where x′: = x→ 0. The present authors devoted the papers, Cornejo and Sankappanavar (Alegbra Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151, 2016c. doi:10.1007/s00500-015-1950-8), to the investigation of the structure of the lattice of subvarieties of I, and to making further contributions to the theory of implication zroupoids. This paper investigates the structure of the derived algebras Am: = ⟨ A, ∧ , 0 ⟩ and Amj: = ⟨ A, ∧ , ∨ , 0 ⟩ of A∈ I, where x∧y:=(x→y′)′ and x∨y:=(x′∧y as well as the lattice of subvarieties of I. The varieties I2 , 0, RD, SRD, C, CP, A, MC, and CLD are defined relative to I, respectively, by: (I2 , 0) x′ ′≈ x, (RD) (x→ y) → z≈ (x→ z) → (y→ z) , (SRD) (x→ y) → z≈ (z→ x) → (y→ z) , (C) x→ y≈ y→ x, (CP) x→ y′≈ y→ x′, (A) (x→ y) → z≈ x→ (y→ z) , (MC) x∧ y≈ y∧ x, (CLD) x→ (y→ z) ≈ (x→ z) → (y→ x). The purpose of this paper is two-fold. Firstly, we show that, for each A∈ I, Am is a semigroup. From this result, we deduce that, for A∈ I2 , 0∩ MC, the derived algebra Amj is a distributive bisemilattice and is also a Birkhoff system. Secondly, we show that CLD⊂ SRD⊂ RD and C⊂CP∩A∩MC∩CLD, both of which are much stronger results than were announced in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012).
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
description In 2012, the second author introduced and studied in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012) the variety I of algebras, called implication zroupoids, that generalize De Morgan algebras. An algebra A= ⟨ A, → , 0 ⟩ , where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′ ′≈ 0 , where x′: = x→ 0. The present authors devoted the papers, Cornejo and Sankappanavar (Alegbra Univers, 2016a; Stud Log 104(3):417–453, 2016b. doi:10.1007/s11225-015-9646-8; and Soft Comput: 20:3139–3151, 2016c. doi:10.1007/s00500-015-1950-8), to the investigation of the structure of the lattice of subvarieties of I, and to making further contributions to the theory of implication zroupoids. This paper investigates the structure of the derived algebras Am: = ⟨ A, ∧ , 0 ⟩ and Amj: = ⟨ A, ∧ , ∨ , 0 ⟩ of A∈ I, where x∧y:=(x→y′)′ and x∨y:=(x′∧y as well as the lattice of subvarieties of I. The varieties I2 , 0, RD, SRD, C, CP, A, MC, and CLD are defined relative to I, respectively, by: (I2 , 0) x′ ′≈ x, (RD) (x→ y) → z≈ (x→ z) → (y→ z) , (SRD) (x→ y) → z≈ (z→ x) → (y→ z) , (C) x→ y≈ y→ x, (CP) x→ y′≈ y→ x′, (A) (x→ y) → z≈ x→ (y→ z) , (MC) x∧ y≈ y∧ x, (CLD) x→ (y→ z) ≈ (x→ z) → (y→ x). The purpose of this paper is two-fold. Firstly, we show that, for each A∈ I, Am is a semigroup. From this result, we deduce that, for A∈ I2 , 0∩ MC, the derived algebra Amj is a distributive bisemilattice and is also a Birkhoff system. Secondly, we show that CLD⊂ SRD⊂ RD and C⊂CP∩A∩MC∩CLD, both of which are much stronger results than were announced in Sankappanavar (Sci Math Jpn 75(1):21–50, 2012).
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60697
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On derived algebras and subvarieties of implication zroupoids; Springer Verlag Berlín; Soft Computing - (Print); 21; 23; 1-12-2017; 6963-6982
1472-7643
1433-7479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60697
identifier_str_mv Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; On derived algebras and subvarieties of implication zroupoids; Springer Verlag Berlín; Soft Computing - (Print); 21; 23; 1-12-2017; 6963-6982
1472-7643
1433-7479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00500-016-2421-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-016-2421-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Verlag Berlín
publisher.none.fl_str_mv Springer Verlag Berlín
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613212720332800
score 13.070432