l-Hemi-Implicative Semilattices

Autores
Castiglioni, José Luis; San Martín, Hernán Javier
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.
Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
Bounded Semilattices
Congruences
Weak Implications
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49865

id CONICETDig_8f3da607314821a18cafa9346472b1ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/49865
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling l-Hemi-Implicative SemilatticesCastiglioni, José LuisSan Martín, Hernán JavierBounded SemilatticesCongruencesWeak Implicationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaSpringer2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49865Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-160039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-017-9759-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-017-9759-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:10Zoai:ri.conicet.gov.ar:11336/49865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:10.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv l-Hemi-Implicative Semilattices
title l-Hemi-Implicative Semilattices
spellingShingle l-Hemi-Implicative Semilattices
Castiglioni, José Luis
Bounded Semilattices
Congruences
Weak Implications
title_short l-Hemi-Implicative Semilattices
title_full l-Hemi-Implicative Semilattices
title_fullStr l-Hemi-Implicative Semilattices
title_full_unstemmed l-Hemi-Implicative Semilattices
title_sort l-Hemi-Implicative Semilattices
dc.creator.none.fl_str_mv Castiglioni, José Luis
San Martín, Hernán Javier
author Castiglioni, José Luis
author_facet Castiglioni, José Luis
San Martín, Hernán Javier
author_role author
author2 San Martín, Hernán Javier
author2_role author
dc.subject.none.fl_str_mv Bounded Semilattices
Congruences
Weak Implications
topic Bounded Semilattices
Congruences
Weak Implications
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.
Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49865
Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16
0039-3215
1572-8730
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49865
identifier_str_mv Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16
0039-3215
1572-8730
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-017-9759-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-017-9759-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979863766499328
score 12.993085