l-Hemi-Implicative Semilattices
- Autores
- Castiglioni, José Luis; San Martín, Hernán Javier
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.
Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Bounded Semilattices
Congruences
Weak Implications - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/49865
Ver los metadatos del registro completo
id |
CONICETDig_8f3da607314821a18cafa9346472b1ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/49865 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
l-Hemi-Implicative SemilatticesCastiglioni, José LuisSan Martín, Hernán JavierBounded SemilatticesCongruencesWeak Implicationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices.Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaSpringer2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49865Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-160039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-017-9759-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-017-9759-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:10Zoai:ri.conicet.gov.ar:11336/49865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:10.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
l-Hemi-Implicative Semilattices |
title |
l-Hemi-Implicative Semilattices |
spellingShingle |
l-Hemi-Implicative Semilattices Castiglioni, José Luis Bounded Semilattices Congruences Weak Implications |
title_short |
l-Hemi-Implicative Semilattices |
title_full |
l-Hemi-Implicative Semilattices |
title_fullStr |
l-Hemi-Implicative Semilattices |
title_full_unstemmed |
l-Hemi-Implicative Semilattices |
title_sort |
l-Hemi-Implicative Semilattices |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis San Martín, Hernán Javier |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bounded Semilattices Congruences Weak Implications |
topic |
Bounded Semilattices Congruences Weak Implications |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices. Fil: Castiglioni, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
An l-hemi-implicative semilattice is an algebra A=(A,∧,→,1) such that (A,∧,1) is a semilattice with a greatest element 1 and satisfies: (1) for every a,b,c∈A , a≤b→c implies a∧b≤c and (2) a→a=1 . An l-hemi-implicative semilattice is commutative if if it satisfies that a→b=b→a for every a,b∈A . It is shown that the class of l-hemi-implicative semilattices is a variety. These algebras provide a general framework for the study of different algebras of interest in algebraic logic. In any l-hemi-implicative semilattice it is possible to define an derived operation by a∼b:=(a→b)∧(b→a) . Endowing (A,∧,1) with the binary operation ∼ the algebra (A,∧,∼,1) results an l-hemi-implicative semilattice, which also satisfies the identity a∼b=b∼a . In this article, we characterize the (derived) commutative l-hemi-implicative semilattices. We also provide many new examples of l-hemi-implicative semilattice on any semillatice with greatest element (possibly with bottom). Finally, we characterize congruences on the classes of l-hemi-implicative semilattices introduced earlier and we characterize the principal congruences of l-hemi-implicative semilattices. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/49865 Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16 0039-3215 1572-8730 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/49865 |
identifier_str_mv |
Castiglioni, José Luis; San Martín, Hernán Javier; l-Hemi-Implicative Semilattices; Springer; Studia Logica; 10-2017; 1-16 0039-3215 1572-8730 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-017-9759-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-017-9759-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979863766499328 |
score |
12.993085 |