Implication Zroupoids and Identities of Associative Type
- Autores
- Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos - Materia
-
IMPLICATION ZRUPOID
VARIETY
IDENTITY OF ASSOCIATIVE TYPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91905
Ver los metadatos del registro completo
id |
CONICETDig_fca96b97568bbc1ab509cb8a869a7031 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91905 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Implication Zroupoids and Identities of Associative TypeCornejo, Juan ManuelSankappanavar, Hanamantagouda P.IMPLICATION ZRUPOIDVARIETYIDENTITY OF ASSOCIATIVE TYPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosInstitute of Mathematics of the Moldovian Academy of Sciences2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91905Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-341561-2848CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10559info:eu-repo/semantics/altIdentifier/url/http://www.math.md/en/publications/qrs/issues/v26-n1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:23Zoai:ri.conicet.gov.ar:11336/91905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:23.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Implication Zroupoids and Identities of Associative Type |
title |
Implication Zroupoids and Identities of Associative Type |
spellingShingle |
Implication Zroupoids and Identities of Associative Type Cornejo, Juan Manuel IMPLICATION ZRUPOID VARIETY IDENTITY OF ASSOCIATIVE TYPE |
title_short |
Implication Zroupoids and Identities of Associative Type |
title_full |
Implication Zroupoids and Identities of Associative Type |
title_fullStr |
Implication Zroupoids and Identities of Associative Type |
title_full_unstemmed |
Implication Zroupoids and Identities of Associative Type |
title_sort |
Implication Zroupoids and Identities of Associative Type |
dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author |
Cornejo, Juan Manuel |
author_facet |
Cornejo, Juan Manuel Sankappanavar, Hanamantagouda P. |
author_role |
author |
author2 |
Sankappanavar, Hanamantagouda P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
IMPLICATION ZRUPOID VARIETY IDENTITY OF ASSOCIATIVE TYPE |
topic |
IMPLICATION ZRUPOID VARIETY IDENTITY OF ASSOCIATIVE TYPE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3. Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos |
description |
An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91905 Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-34 1561-2848 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91905 |
identifier_str_mv |
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-34 1561-2848 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10559 info:eu-repo/semantics/altIdentifier/url/http://www.math.md/en/publications/qrs/issues/v26-n1/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Mathematics of the Moldovian Academy of Sciences |
publisher.none.fl_str_mv |
Institute of Mathematics of the Moldovian Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082862538817536 |
score |
13.22299 |