Implication Zroupoids and Identities of Associative Type

Autores
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
Materia
IMPLICATION ZRUPOID
VARIETY
IDENTITY OF ASSOCIATIVE TYPE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91905

id CONICETDig_fca96b97568bbc1ab509cb8a869a7031
oai_identifier_str oai:ri.conicet.gov.ar:11336/91905
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Implication Zroupoids and Identities of Associative TypeCornejo, Juan ManuelSankappanavar, Hanamantagouda P.IMPLICATION ZRUPOIDVARIETYIDENTITY OF ASSOCIATIVE TYPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados UnidosInstitute of Mathematics of the Moldovian Academy of Sciences2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91905Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-341561-2848CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10559info:eu-repo/semantics/altIdentifier/url/http://www.math.md/en/publications/qrs/issues/v26-n1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:38:23Zoai:ri.conicet.gov.ar:11336/91905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:38:23.534CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Implication Zroupoids and Identities of Associative Type
title Implication Zroupoids and Identities of Associative Type
spellingShingle Implication Zroupoids and Identities of Associative Type
Cornejo, Juan Manuel
IMPLICATION ZRUPOID
VARIETY
IDENTITY OF ASSOCIATIVE TYPE
title_short Implication Zroupoids and Identities of Associative Type
title_full Implication Zroupoids and Identities of Associative Type
title_fullStr Implication Zroupoids and Identities of Associative Type
title_full_unstemmed Implication Zroupoids and Identities of Associative Type
title_sort Implication Zroupoids and Identities of Associative Type
dc.creator.none.fl_str_mv Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author Cornejo, Juan Manuel
author_facet Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
author_role author
author2 Sankappanavar, Hanamantagouda P.
author2_role author
dc.subject.none.fl_str_mv IMPLICATION ZRUPOID
VARIETY
IDENTITY OF ASSOCIATIVE TYPE
topic IMPLICATION ZRUPOID
VARIETY
IDENTITY OF ASSOCIATIVE TYPE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos
description An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91905
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-34
1561-2848
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91905
identifier_str_mv Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-34
1561-2848
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10559
info:eu-repo/semantics/altIdentifier/url/http://www.math.md/en/publications/qrs/issues/v26-n1/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Mathematics of the Moldovian Academy of Sciences
publisher.none.fl_str_mv Institute of Mathematics of the Moldovian Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082862538817536
score 13.22299