U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions

Autores
Cesco, Juan Carlos; Calí, Ana Lucía
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It has been recently proved that the non-existence of certain type of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n-1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n-1 and n-person permissible coalitions (Maschler (1963)).
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana Lucía. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina
Materia
NON BALANCED GAMES
CYCLES
TRANSFER SCHEMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274060

id CONICETDig_fcd8ef485e1da22db44dde8693d29d74
oai_identifier_str oai:ri.conicet.gov.ar:11336/274060
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitionsCesco, Juan CarlosCalí, Ana LucíaNON BALANCED GAMESCYCLESTRANSFER SCHEMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It has been recently proved that the non-existence of certain type of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n-1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n-1 and n-person permissible coalitions (Maschler (1963)).Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Calí, Ana Lucía. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; ArgentinaWorld Scientific2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/274060Cesco, Juan Carlos; Calí, Ana Lucía; U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions; World Scientific; International Game Theory Review; 8; 3; 12-2006; 355-3680219-1989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219198906000965info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219198906000965info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:40:32Zoai:ri.conicet.gov.ar:11336/274060instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:40:32.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
title U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
spellingShingle U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
Cesco, Juan Carlos
NON BALANCED GAMES
CYCLES
TRANSFER SCHEMES
title_short U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
title_full U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
title_fullStr U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
title_full_unstemmed U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
title_sort U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions
dc.creator.none.fl_str_mv Cesco, Juan Carlos
Calí, Ana Lucía
author Cesco, Juan Carlos
author_facet Cesco, Juan Carlos
Calí, Ana Lucía
author_role author
author2 Calí, Ana Lucía
author2_role author
dc.subject.none.fl_str_mv NON BALANCED GAMES
CYCLES
TRANSFER SCHEMES
topic NON BALANCED GAMES
CYCLES
TRANSFER SCHEMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It has been recently proved that the non-existence of certain type of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n-1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n-1 and n-person permissible coalitions (Maschler (1963)).
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana Lucía. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina
description It has been recently proved that the non-existence of certain type of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-games (Cesco (2003)). In some cases, the class of fundamental cycles can be narrowed and still obtain a characterization theorem. In this paper we prove that existence of maximal U-cycles, which are related to a transfer scheme designed for computing a point in the core of a game, is condition necessary and sufficient for a TU-game be non-balanced, provided n-1 and n-person are the only coalitions with non-zero value. These games are strongly related to games with only 1, n-1 and n-person permissible coalitions (Maschler (1963)).
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274060
Cesco, Juan Carlos; Calí, Ana Lucía; U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions; World Scientific; International Game Theory Review; 8; 3; 12-2006; 355-368
0219-1989
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274060
identifier_str_mv Cesco, Juan Carlos; Calí, Ana Lucía; U-cycles in n-person TU games with only 1, n-1 and n-person permissible coalitions; World Scientific; International Game Theory Review; 8; 3; 12-2006; 355-368
0219-1989
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219198906000965
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219198906000965
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/msword
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847976951047782400
score 13.087074