A general characterization for non-balanced games in terms of U-cycles

Autores
Cesco, Juan Carlos
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of Game Theory 32, 211-222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equivalent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar characterization for non-balanced TU-games.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
CHARACTERIZATION
CYCLES
NON-BALANCED GAMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/127440

id CONICETDig_1436ef0bec444db5489f79e3e056d3b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/127440
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A general characterization for non-balanced games in terms of U-cyclesCesco, Juan CarlosCHARACTERIZATIONCYCLESNON-BALANCED GAMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of Game Theory 32, 211-222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equivalent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar characterization for non-balanced TU-games.Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaElsevier Science2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127440Cesco, Juan Carlos; A general characterization for non-balanced games in terms of U-cycles; Elsevier Science; European Journal of Operational Research; 191; 2; 12-2008; 409-4150377-2217CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2007.08.041info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0377221707009009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:38Zoai:ri.conicet.gov.ar:11336/127440instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:39.096CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A general characterization for non-balanced games in terms of U-cycles
title A general characterization for non-balanced games in terms of U-cycles
spellingShingle A general characterization for non-balanced games in terms of U-cycles
Cesco, Juan Carlos
CHARACTERIZATION
CYCLES
NON-BALANCED GAMES
title_short A general characterization for non-balanced games in terms of U-cycles
title_full A general characterization for non-balanced games in terms of U-cycles
title_fullStr A general characterization for non-balanced games in terms of U-cycles
title_full_unstemmed A general characterization for non-balanced games in terms of U-cycles
title_sort A general characterization for non-balanced games in terms of U-cycles
dc.creator.none.fl_str_mv Cesco, Juan Carlos
author Cesco, Juan Carlos
author_facet Cesco, Juan Carlos
author_role author
dc.subject.none.fl_str_mv CHARACTERIZATION
CYCLES
NON-BALANCED GAMES
topic CHARACTERIZATION
CYCLES
NON-BALANCED GAMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of Game Theory 32, 211-222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equivalent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar characterization for non-balanced TU-games.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of Game Theory 32, 211-222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equivalent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar characterization for non-balanced TU-games.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/127440
Cesco, Juan Carlos; A general characterization for non-balanced games in terms of U-cycles; Elsevier Science; European Journal of Operational Research; 191; 2; 12-2008; 409-415
0377-2217
CONICET Digital
CONICET
url http://hdl.handle.net/11336/127440
identifier_str_mv Cesco, Juan Carlos; A general characterization for non-balanced games in terms of U-cycles; Elsevier Science; European Journal of Operational Research; 191; 2; 12-2008; 409-415
0377-2217
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2007.08.041
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0377221707009009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270089694412800
score 13.13397