U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
- Autores
- Cesco, Juan Carlos; Calí, Ana L.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina - Materia
-
NON BALANCED GAMES
CYCLES
TRANSFER SCHEME - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236722
Ver los metadatos del registro completo
id |
CONICETDig_38e6e732a3a7001f669c32a30f5a92a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236722 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitionsCesco, Juan CarlosCalí, Ana L.NON BALANCED GAMESCYCLESTRANSFER SCHEMEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Calí, Ana L.. Universidad Nacional de San Luis; ArgentinaAcademic Publications Ltd2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236722Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-4851311-8080CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:05Zoai:ri.conicet.gov.ar:11336/236722instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:06.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
title |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
spellingShingle |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions Cesco, Juan Carlos NON BALANCED GAMES CYCLES TRANSFER SCHEME |
title_short |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
title_full |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
title_fullStr |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
title_full_unstemmed |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
title_sort |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
dc.creator.none.fl_str_mv |
Cesco, Juan Carlos Calí, Ana L. |
author |
Cesco, Juan Carlos |
author_facet |
Cesco, Juan Carlos Calí, Ana L. |
author_role |
author |
author2 |
Calí, Ana L. |
author2_role |
author |
dc.subject.none.fl_str_mv |
NON BALANCED GAMES CYCLES TRANSFER SCHEME |
topic |
NON BALANCED GAMES CYCLES TRANSFER SCHEME |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles. Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina |
description |
It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236722 Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485 1311-8080 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/236722 |
identifier_str_mv |
Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485 1311-8080 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Publications Ltd |
publisher.none.fl_str_mv |
Academic Publications Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269782156509184 |
score |
13.13397 |