U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
- Autores
- Cesco, Juan Carlos; Calí, Ana L.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina - Materia
-
NON BALANCED GAMES
CYCLES
TRANSFER SCHEME - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236722
Ver los metadatos del registro completo
| id |
CONICETDig_38e6e732a3a7001f669c32a30f5a92a0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236722 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitionsCesco, Juan CarlosCalí, Ana L.NON BALANCED GAMESCYCLESTRANSFER SCHEMEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Calí, Ana L.. Universidad Nacional de San Luis; ArgentinaAcademic Publications Ltd2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236722Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-4851311-8080CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:23:53Zoai:ri.conicet.gov.ar:11336/236722instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:23:53.579CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| title |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| spellingShingle |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions Cesco, Juan Carlos NON BALANCED GAMES CYCLES TRANSFER SCHEME |
| title_short |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| title_full |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| title_fullStr |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| title_full_unstemmed |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| title_sort |
U-cycles in n-person TU-games with equal-sized objectionable families of coalitions |
| dc.creator.none.fl_str_mv |
Cesco, Juan Carlos Calí, Ana L. |
| author |
Cesco, Juan Carlos |
| author_facet |
Cesco, Juan Carlos Calí, Ana L. |
| author_role |
author |
| author2 |
Calí, Ana L. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
NON BALANCED GAMES CYCLES TRANSFER SCHEME |
| topic |
NON BALANCED GAMES CYCLES TRANSFER SCHEME |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles. Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina |
| description |
It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236722 Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485 1311-8080 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/236722 |
| identifier_str_mv |
Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485 1311-8080 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Publications Ltd |
| publisher.none.fl_str_mv |
Academic Publications Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977866394861568 |
| score |
13.087074 |