U-cycles in n-person TU-games with equal-sized objectionable families of coalitions

Autores
Cesco, Juan Carlos; Calí, Ana L.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina
Materia
NON BALANCED GAMES
CYCLES
TRANSFER SCHEME
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/236722

id CONICETDig_38e6e732a3a7001f669c32a30f5a92a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/236722
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling U-cycles in n-person TU-games with equal-sized objectionable families of coalitionsCesco, Juan CarlosCalí, Ana L.NON BALANCED GAMESCYCLESTRANSFER SCHEMEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Calí, Ana L.. Universidad Nacional de San Luis; ArgentinaAcademic Publications Ltd2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236722Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-4851311-8080CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:05Zoai:ri.conicet.gov.ar:11336/236722instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:06.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
title U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
spellingShingle U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
Cesco, Juan Carlos
NON BALANCED GAMES
CYCLES
TRANSFER SCHEME
title_short U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
title_full U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
title_fullStr U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
title_full_unstemmed U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
title_sort U-cycles in n-person TU-games with equal-sized objectionable families of coalitions
dc.creator.none.fl_str_mv Cesco, Juan Carlos
Calí, Ana L.
author Cesco, Juan Carlos
author_facet Cesco, Juan Carlos
Calí, Ana L.
author_role author
author2 Calí, Ana L.
author2_role author
dc.subject.none.fl_str_mv NON BALANCED GAMES
CYCLES
TRANSFER SCHEME
topic NON BALANCED GAMES
CYCLES
TRANSFER SCHEME
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Calí, Ana L.. Universidad Nacional de San Luis; Argentina
description It has recently been proven that the non-existence of certain types of cycles of pre-imputation, fundamental cycles, is equivalent to the balancedness of a TU-game (see [3]). In some cases, the class of fundamental cycles can be narrowed and a characterization theorem may still be obtained. In this paper, we deal with n-person TU-games for which the only coalitions with nonzero value, aside from the grand coalition, are all coalitions of the same size k ≤ n, which also form a balanced family of coalitions. This class of games includes those studied in previous papers where the non-zero value coalitions are the family of coalitions with n − 1 players. The main result obtained in this framework is that it is always possible to find a U-cycle, a certain type of fundamental cycle, provided the game under consideration is non-balanced and n and k are relatively prime. A computational procedure to get the cycle is provided as well. In many situations, these cycles turn out to be maximal U-cycles, an even more restricted class of fundamental cycles.
publishDate 2009
dc.date.none.fl_str_mv 2009-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/236722
Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485
1311-8080
CONICET Digital
CONICET
url http://hdl.handle.net/11336/236722
identifier_str_mv Cesco, Juan Carlos; Calí, Ana L.; U-cycles in n-person TU-games with equal-sized objectionable families of coalitions; Academic Publications Ltd; International Journal in Pure and Applied Mathematics; 56; 4; 8-2009; 465-485
1311-8080
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/https://www.ijpam.eu/contents/2009-56-4/1/1.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Publications Ltd
publisher.none.fl_str_mv Academic Publications Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269782156509184
score 13.13397