Homotopy invariance through small stabilizations

Autores
Cortiñas, Guillermo Horacio; Abadie, Beatriz
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Abadie, Beatriz. Universidad de la República; Uruguay
Materia
Homotopy Invariance
Calkin'S Theorem
Operator Ideals
Inverse Semigroup Crossed Products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14843

id CONICETDig_fc7504b7fc72a3e252ce81bc212ac2a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/14843
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homotopy invariance through small stabilizationsCortiñas, Guillermo HoracioAbadie, BeatrizHomotopy InvarianceCalkin'S TheoremOperator IdealsInverse Semigroup Crossed Productshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Abadie, Beatriz. Universidad de la República; UruguaySpringer2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14843Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–4932193-84071512-2891enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s40062-013-0069-9info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s40062-013-0069-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:58Zoai:ri.conicet.gov.ar:11336/14843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:58.526CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homotopy invariance through small stabilizations
title Homotopy invariance through small stabilizations
spellingShingle Homotopy invariance through small stabilizations
Cortiñas, Guillermo Horacio
Homotopy Invariance
Calkin'S Theorem
Operator Ideals
Inverse Semigroup Crossed Products
title_short Homotopy invariance through small stabilizations
title_full Homotopy invariance through small stabilizations
title_fullStr Homotopy invariance through small stabilizations
title_full_unstemmed Homotopy invariance through small stabilizations
title_sort Homotopy invariance through small stabilizations
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Abadie, Beatriz
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Abadie, Beatriz
author_role author
author2 Abadie, Beatriz
author2_role author
dc.subject.none.fl_str_mv Homotopy Invariance
Calkin'S Theorem
Operator Ideals
Inverse Semigroup Crossed Products
topic Homotopy Invariance
Calkin'S Theorem
Operator Ideals
Inverse Semigroup Crossed Products
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Abadie, Beatriz. Universidad de la República; Uruguay
description We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.
publishDate 2013
dc.date.none.fl_str_mv 2013-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14843
Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–493
2193-8407
1512-2891
url http://hdl.handle.net/11336/14843
identifier_str_mv Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–493
2193-8407
1512-2891
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s40062-013-0069-9
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s40062-013-0069-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980982823583744
score 12.993085