Homotopy invariance through small stabilizations
- Autores
- Cortiñas, Guillermo Horacio; Abadie, Beatriz
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Abadie, Beatriz. Universidad de la República; Uruguay - Materia
-
Homotopy Invariance
Calkin'S Theorem
Operator Ideals
Inverse Semigroup Crossed Products - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14843
Ver los metadatos del registro completo
id |
CONICETDig_fc7504b7fc72a3e252ce81bc212ac2a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14843 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homotopy invariance through small stabilizationsCortiñas, Guillermo HoracioAbadie, BeatrizHomotopy InvarianceCalkin'S TheoremOperator IdealsInverse Semigroup Crossed Productshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Abadie, Beatriz. Universidad de la República; UruguaySpringer2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14843Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–4932193-84071512-2891enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s40062-013-0069-9info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s40062-013-0069-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:58Zoai:ri.conicet.gov.ar:11336/14843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:58.526CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homotopy invariance through small stabilizations |
title |
Homotopy invariance through small stabilizations |
spellingShingle |
Homotopy invariance through small stabilizations Cortiñas, Guillermo Horacio Homotopy Invariance Calkin'S Theorem Operator Ideals Inverse Semigroup Crossed Products |
title_short |
Homotopy invariance through small stabilizations |
title_full |
Homotopy invariance through small stabilizations |
title_fullStr |
Homotopy invariance through small stabilizations |
title_full_unstemmed |
Homotopy invariance through small stabilizations |
title_sort |
Homotopy invariance through small stabilizations |
dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Abadie, Beatriz |
author |
Cortiñas, Guillermo Horacio |
author_facet |
Cortiñas, Guillermo Horacio Abadie, Beatriz |
author_role |
author |
author2 |
Abadie, Beatriz |
author2_role |
author |
dc.subject.none.fl_str_mv |
Homotopy Invariance Calkin'S Theorem Operator Ideals Inverse Semigroup Crossed Products |
topic |
Homotopy Invariance Calkin'S Theorem Operator Ideals Inverse Semigroup Crossed Products |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Abadie, Beatriz. Universidad de la República; Uruguay |
description |
We associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14843 Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–493 2193-8407 1512-2891 |
url |
http://hdl.handle.net/11336/14843 |
identifier_str_mv |
Cortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–493 2193-8407 1512-2891 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s40062-013-0069-9 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s40062-013-0069-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980982823583744 |
score |
12.993085 |