Homotopy colimits of diagrams over posets and variations on a theorem of Thomason
- Autores
- Fernández, Ximena Laura; Minian, Elias Gabriel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use a classical result of McCord and reduction methods of finite spaces to prove a generalization of Thomason's theorem on homotopy colimits over posets. In particular, this allows us to characterize the homotopy colimits of diagrams of simplicial complexes in terms of the Grothendieck construction on the diagrams of their face posets. We also derive analogues of well known results on homotopy colimits in the combinatorial setting, including a cofinality theorem and a generalization of Quillen's Theorem A for posets.
Fil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
FINITE TOPOLOGICAL SPACE
GROTHENDIECK CONSTRUCTION
HOMOTOPY COLIMIT
POSET
QUILLEN'S THEOREM A - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55511
Ver los metadatos del registro completo
id |
CONICETDig_cfe1c1746f0e9fc8f601d25f0ea5dd88 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55511 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homotopy colimits of diagrams over posets and variations on a theorem of ThomasonFernández, Ximena LauraMinian, Elias GabrielFINITE TOPOLOGICAL SPACEGROTHENDIECK CONSTRUCTIONHOMOTOPY COLIMITPOSETQUILLEN'S THEOREM Ahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use a classical result of McCord and reduction methods of finite spaces to prove a generalization of Thomason's theorem on homotopy colimits over posets. In particular, this allows us to characterize the homotopy colimits of diagrams of simplicial complexes in terms of the Grothendieck construction on the diagrams of their face posets. We also derive analogues of well known results on homotopy colimits in the combinatorial setting, including a cofinality theorem and a generalization of Quillen's Theorem A for posets.Fil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaInternational Press Boston2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55511Fernández, Ximena Laura; Minian, Elias Gabriel; Homotopy colimits of diagrams over posets and variations on a theorem of Thomason; International Press Boston; Homology, Homotopy And Applications (hha); 18; 2; 1-2016; 233-2451532-0073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.5646info:eu-repo/semantics/altIdentifier/doi/10.4310/HHA.2016.v18.n2.a13info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:35Zoai:ri.conicet.gov.ar:11336/55511instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:36.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
title |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
spellingShingle |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason Fernández, Ximena Laura FINITE TOPOLOGICAL SPACE GROTHENDIECK CONSTRUCTION HOMOTOPY COLIMIT POSET QUILLEN'S THEOREM A |
title_short |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
title_full |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
title_fullStr |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
title_full_unstemmed |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
title_sort |
Homotopy colimits of diagrams over posets and variations on a theorem of Thomason |
dc.creator.none.fl_str_mv |
Fernández, Ximena Laura Minian, Elias Gabriel |
author |
Fernández, Ximena Laura |
author_facet |
Fernández, Ximena Laura Minian, Elias Gabriel |
author_role |
author |
author2 |
Minian, Elias Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
FINITE TOPOLOGICAL SPACE GROTHENDIECK CONSTRUCTION HOMOTOPY COLIMIT POSET QUILLEN'S THEOREM A |
topic |
FINITE TOPOLOGICAL SPACE GROTHENDIECK CONSTRUCTION HOMOTOPY COLIMIT POSET QUILLEN'S THEOREM A |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use a classical result of McCord and reduction methods of finite spaces to prove a generalization of Thomason's theorem on homotopy colimits over posets. In particular, this allows us to characterize the homotopy colimits of diagrams of simplicial complexes in terms of the Grothendieck construction on the diagrams of their face posets. We also derive analogues of well known results on homotopy colimits in the combinatorial setting, including a cofinality theorem and a generalization of Quillen's Theorem A for posets. Fil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
We use a classical result of McCord and reduction methods of finite spaces to prove a generalization of Thomason's theorem on homotopy colimits over posets. In particular, this allows us to characterize the homotopy colimits of diagrams of simplicial complexes in terms of the Grothendieck construction on the diagrams of their face posets. We also derive analogues of well known results on homotopy colimits in the combinatorial setting, including a cofinality theorem and a generalization of Quillen's Theorem A for posets. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55511 Fernández, Ximena Laura; Minian, Elias Gabriel; Homotopy colimits of diagrams over posets and variations on a theorem of Thomason; International Press Boston; Homology, Homotopy And Applications (hha); 18; 2; 1-2016; 233-245 1532-0073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55511 |
identifier_str_mv |
Fernández, Ximena Laura; Minian, Elias Gabriel; Homotopy colimits of diagrams over posets and variations on a theorem of Thomason; International Press Boston; Homology, Homotopy And Applications (hha); 18; 2; 1-2016; 233-245 1532-0073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.5646 info:eu-repo/semantics/altIdentifier/doi/10.4310/HHA.2016.v18.n2.a13 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268931694264320 |
score |
12.885934 |