On-line policy learning and adaptation for real-time personalization of an artificial pancreas
- Autores
- de Paula, Mariano; Acosta, Gerardo Gabriel; Martinez, Ernesto Carlos
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamic complexity of the glucose-insulin metabolism in diabetic patients is the main obstacle towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic variability requires continuously adapting the control policy to successfully face daily changes in patient´s metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that enables real-time adaptation of a control policy based on ongoing interactions with the patient so as to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsification and parameter updating of the Gaussian process used to approximate the control policy. With the proposed sparsification method, the support data dictionary for on-line learning is modified by checking if in the arriving data stream there exists novel information to be added to the dictionary in order to personalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both safe and efficient for maintaining blood glucose variability within the normoglycemic range.
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernacion. Comision de Invest.cientificas. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires; Argentina
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingenieria Olavarria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Diabetes
Gaussian Processes
Glycemic Variability
On-Line Sparsification
Policy Learning
Reinforcement Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22463
Ver los metadatos del registro completo
id |
CONICETDig_fc66d3bd42e72da06f190a6e94b1b489 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22463 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On-line policy learning and adaptation for real-time personalization of an artificial pancreasde Paula, MarianoAcosta, Gerardo GabrielMartinez, Ernesto CarlosDiabetesGaussian ProcessesGlycemic VariabilityOn-Line SparsificationPolicy LearningReinforcement Learninghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The dynamic complexity of the glucose-insulin metabolism in diabetic patients is the main obstacle towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic variability requires continuously adapting the control policy to successfully face daily changes in patient´s metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that enables real-time adaptation of a control policy based on ongoing interactions with the patient so as to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsification and parameter updating of the Gaussian process used to approximate the control policy. With the proposed sparsification method, the support data dictionary for on-line learning is modified by checking if in the arriving data stream there exists novel information to be added to the dictionary in order to personalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both safe and efficient for maintaining blood glucose variability within the normoglycemic range.Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernacion. Comision de Invest.cientificas. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires; ArgentinaFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingenieria Olavarria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22463de Paula, Mariano; Acosta, Gerardo Gabriel; Martinez, Ernesto Carlos; On-line policy learning and adaptation for real-time personalization of an artificial pancreas; Elsevier; Expert Systems with Applications; 42; 4; 10-2014; 2234-22550957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.10.038info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414006629info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:47Zoai:ri.conicet.gov.ar:11336/22463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:47.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
title |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
spellingShingle |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas de Paula, Mariano Diabetes Gaussian Processes Glycemic Variability On-Line Sparsification Policy Learning Reinforcement Learning |
title_short |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
title_full |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
title_fullStr |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
title_full_unstemmed |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
title_sort |
On-line policy learning and adaptation for real-time personalization of an artificial pancreas |
dc.creator.none.fl_str_mv |
de Paula, Mariano Acosta, Gerardo Gabriel Martinez, Ernesto Carlos |
author |
de Paula, Mariano |
author_facet |
de Paula, Mariano Acosta, Gerardo Gabriel Martinez, Ernesto Carlos |
author_role |
author |
author2 |
Acosta, Gerardo Gabriel Martinez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Diabetes Gaussian Processes Glycemic Variability On-Line Sparsification Policy Learning Reinforcement Learning |
topic |
Diabetes Gaussian Processes Glycemic Variability On-Line Sparsification Policy Learning Reinforcement Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The dynamic complexity of the glucose-insulin metabolism in diabetic patients is the main obstacle towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic variability requires continuously adapting the control policy to successfully face daily changes in patient´s metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that enables real-time adaptation of a control policy based on ongoing interactions with the patient so as to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsification and parameter updating of the Gaussian process used to approximate the control policy. With the proposed sparsification method, the support data dictionary for on-line learning is modified by checking if in the arriving data stream there exists novel information to be added to the dictionary in order to personalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both safe and efficient for maintaining blood glucose variability within the normoglycemic range. Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Universidad Nacional del Centro de la Pcia.de Bs.as.. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernacion. Comision de Invest.cientificas. Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires; Argentina Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingenieria Olavarria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
The dynamic complexity of the glucose-insulin metabolism in diabetic patients is the main obstacle towards widespread use of an artificial pancreas. The significant level of subject-specific glycemic variability requires continuously adapting the control policy to successfully face daily changes in patient´s metabolism and lifestyle. In this paper, an on-line selective reinforcement learning algorithm that enables real-time adaptation of a control policy based on ongoing interactions with the patient so as to tailor the artificial pancreas is proposed. Adaptation includes two online procedures: on-line sparsification and parameter updating of the Gaussian process used to approximate the control policy. With the proposed sparsification method, the support data dictionary for on-line learning is modified by checking if in the arriving data stream there exists novel information to be added to the dictionary in order to personalize the policy. Results obtained in silico experiments demonstrate that on-line policy learning is both safe and efficient for maintaining blood glucose variability within the normoglycemic range. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22463 de Paula, Mariano; Acosta, Gerardo Gabriel; Martinez, Ernesto Carlos; On-line policy learning and adaptation for real-time personalization of an artificial pancreas; Elsevier; Expert Systems with Applications; 42; 4; 10-2014; 2234-2255 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22463 |
identifier_str_mv |
de Paula, Mariano; Acosta, Gerardo Gabriel; Martinez, Ernesto Carlos; On-line policy learning and adaptation for real-time personalization of an artificial pancreas; Elsevier; Expert Systems with Applications; 42; 4; 10-2014; 2234-2255 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.10.038 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414006629 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614133593407488 |
score |
13.070432 |