Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
- Autores
- de Paula, Mariano; Martinez, Ernesto Carlos
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i); - Materia
-
Hybrid Systems
Stochastic Systems
Optimization
Reinforcement Learning
Gaussian Processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/881
Ver los metadatos del registro completo
| id |
CONICETDig_48a755de12b8b1f76d020f50f067c027 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/881 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processesde Paula, MarianoMartinez, Ernesto CarlosHybrid SystemsStochastic SystemsOptimizationReinforcement LearningGaussian Processeshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systemsFil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i);Planta Piloto de Ingeniería Química2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/881de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-2540327-07931851-8796enginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4303/Vol43_03_249.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:55:50Zoai:ri.conicet.gov.ar:11336/881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:55:50.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| title |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| spellingShingle |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes de Paula, Mariano Hybrid Systems Stochastic Systems Optimization Reinforcement Learning Gaussian Processes |
| title_short |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| title_full |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| title_fullStr |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| title_full_unstemmed |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| title_sort |
Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes |
| dc.creator.none.fl_str_mv |
de Paula, Mariano Martinez, Ernesto Carlos |
| author |
de Paula, Mariano |
| author_facet |
de Paula, Mariano Martinez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martinez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Hybrid Systems Stochastic Systems Optimization Reinforcement Learning Gaussian Processes |
| topic |
Hybrid Systems Stochastic Systems Optimization Reinforcement Learning Gaussian Processes |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i); |
| description |
In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/881 de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-254 0327-0793 1851-8796 |
| url |
http://hdl.handle.net/11336/881 |
| identifier_str_mv |
de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-254 0327-0793 1851-8796 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4303/Vol43_03_249.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
| publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598309333106688 |
| score |
12.976206 |