Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes

Autores
de Paula, Mariano; Martinez, Ernesto Carlos
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i);
Materia
Hybrid Systems
Stochastic Systems
Optimization
Reinforcement Learning
Gaussian Processes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/881

id CONICETDig_48a755de12b8b1f76d020f50f067c027
oai_identifier_str oai:ri.conicet.gov.ar:11336/881
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processesde Paula, MarianoMartinez, Ernesto CarlosHybrid SystemsStochastic SystemsOptimizationReinforcement LearningGaussian Processeshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systemsFil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i);Planta Piloto de Ingeniería Química2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/881de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-2540327-07931851-8796enginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4303/Vol43_03_249.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:56Zoai:ri.conicet.gov.ar:11336/881instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:57.233CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
title Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
spellingShingle Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
de Paula, Mariano
Hybrid Systems
Stochastic Systems
Optimization
Reinforcement Learning
Gaussian Processes
title_short Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
title_full Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
title_fullStr Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
title_full_unstemmed Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
title_sort Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes
dc.creator.none.fl_str_mv de Paula, Mariano
Martinez, Ernesto Carlos
author de Paula, Mariano
author_facet de Paula, Mariano
Martinez, Ernesto Carlos
author_role author
author2 Martinez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv Hybrid Systems
Stochastic Systems
Optimization
Reinforcement Learning
Gaussian Processes
topic Hybrid Systems
Stochastic Systems
Optimization
Reinforcement Learning
Gaussian Processes
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológio - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Desarrollo y Dise?o (i);
description In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Rein-forcement Learning with Gaussian Process models to learn the transitions dynamics descriptive of mode execution and an optimal switching policy for mode selection. Each mode implements a parameterized feedback control law until a stopping condition trig-gers. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Throughput maximization in a buffer tank subject to an uncertain schedule of sev-eral inflow discharges is used as case study address-ing supply chain control in manufacturing systems
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/881
de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-254
0327-0793
1851-8796
url http://hdl.handle.net/11336/881
identifier_str_mv de Paula, Mariano; Martinez, Ernesto Carlos; Reinforcement Learning using Gaussian Processes for Discretely Controlled Continuous Processes; Planta Piloto de Ingeniería Química; Latin American Applied Research; 43; 7-2013; 249-254
0327-0793
1851-8796
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v4303/Vol43_03_249.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614331999715328
score 13.069144