Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes
- Autores
- de Paula, Mariano; Avila, Luis Omar; Martinez, Ernesto Carlos
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Automated control of blood glucose (BG) concentration with a fully automated artificial pancreas will certainly improve the quality of life for insulin-dependent patients. Closed-loop insulin delivery is challenging due to inter- and intra-patient variability, errors in glucose sensors and delays in insulin absorption. Responding to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and providing the necessary personalized control for individuals is a challenging task for existing control algorithms. A novel approach for controlling glycemic variability using simulation-based learning is presented. A policy iteration algorithm that combines reinforcement learning with Gaussian process approximation is proposed. To account for multiple sources of uncertainty, a control policy is learned off-line using an Ito´s stochastic model of the glucose-insulin dynamics. For safety and performance, only relevant data are sampled through Bayesian active learning. Results obtained demonstrate that a generic policy is both safe and efficient for controlling subject-specific variability due to a patient´s lifestyle and its distinctive metabolic response.
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina - Materia
-
Artificial Pancreas
Diabetes
Gaussian Processes
Policy Iteration
Reinforcement Learning
Stochastic Optimal Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6897
Ver los metadatos del registro completo
id |
CONICETDig_3f2789cf425f72165f28f87bc66e3fab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processesde Paula, MarianoAvila, Luis OmarMartinez, Ernesto CarlosArtificial PancreasDiabetesGaussian ProcessesPolicy IterationReinforcement LearningStochastic Optimal Controlhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3Automated control of blood glucose (BG) concentration with a fully automated artificial pancreas will certainly improve the quality of life for insulin-dependent patients. Closed-loop insulin delivery is challenging due to inter- and intra-patient variability, errors in glucose sensors and delays in insulin absorption. Responding to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and providing the necessary personalized control for individuals is a challenging task for existing control algorithms. A novel approach for controlling glycemic variability using simulation-based learning is presented. A policy iteration algorithm that combines reinforcement learning with Gaussian process approximation is proposed. To account for multiple sources of uncertainty, a control policy is learned off-line using an Ito´s stochastic model of the glucose-insulin dynamics. For safety and performance, only relevant data are sampled through Bayesian active learning. Results obtained demonstrate that a generic policy is both safe and efficient for controlling subject-specific variability due to a patient´s lifestyle and its distinctive metabolic response.Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaElsevier2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6897de Paula, Mariano; Avila, Luis Omar; Martinez, Ernesto Carlos; Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes; Elsevier; Applied Soft Computing; 35; 6-2015; 310-3321568-4946enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1568494615003932info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2015.06.041info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:06Zoai:ri.conicet.gov.ar:11336/6897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:06.35CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
title |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
spellingShingle |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes de Paula, Mariano Artificial Pancreas Diabetes Gaussian Processes Policy Iteration Reinforcement Learning Stochastic Optimal Control |
title_short |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
title_full |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
title_fullStr |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
title_full_unstemmed |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
title_sort |
Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes |
dc.creator.none.fl_str_mv |
de Paula, Mariano Avila, Luis Omar Martinez, Ernesto Carlos |
author |
de Paula, Mariano |
author_facet |
de Paula, Mariano Avila, Luis Omar Martinez, Ernesto Carlos |
author_role |
author |
author2 |
Avila, Luis Omar Martinez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Artificial Pancreas Diabetes Gaussian Processes Policy Iteration Reinforcement Learning Stochastic Optimal Control |
topic |
Artificial Pancreas Diabetes Gaussian Processes Policy Iteration Reinforcement Learning Stochastic Optimal Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Automated control of blood glucose (BG) concentration with a fully automated artificial pancreas will certainly improve the quality of life for insulin-dependent patients. Closed-loop insulin delivery is challenging due to inter- and intra-patient variability, errors in glucose sensors and delays in insulin absorption. Responding to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and providing the necessary personalized control for individuals is a challenging task for existing control algorithms. A novel approach for controlling glycemic variability using simulation-based learning is presented. A policy iteration algorithm that combines reinforcement learning with Gaussian process approximation is proposed. To account for multiple sources of uncertainty, a control policy is learned off-line using an Ito´s stochastic model of the glucose-insulin dynamics. For safety and performance, only relevant data are sampled through Bayesian active learning. Results obtained demonstrate that a generic policy is both safe and efficient for controlling subject-specific variability due to a patient´s lifestyle and its distinctive metabolic response. Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ingeniería Olavarria. Departamento de Electromecánica. Grupo INTELYMEC; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina |
description |
Automated control of blood glucose (BG) concentration with a fully automated artificial pancreas will certainly improve the quality of life for insulin-dependent patients. Closed-loop insulin delivery is challenging due to inter- and intra-patient variability, errors in glucose sensors and delays in insulin absorption. Responding to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and providing the necessary personalized control for individuals is a challenging task for existing control algorithms. A novel approach for controlling glycemic variability using simulation-based learning is presented. A policy iteration algorithm that combines reinforcement learning with Gaussian process approximation is proposed. To account for multiple sources of uncertainty, a control policy is learned off-line using an Ito´s stochastic model of the glucose-insulin dynamics. For safety and performance, only relevant data are sampled through Bayesian active learning. Results obtained demonstrate that a generic policy is both safe and efficient for controlling subject-specific variability due to a patient´s lifestyle and its distinctive metabolic response. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6897 de Paula, Mariano; Avila, Luis Omar; Martinez, Ernesto Carlos; Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes; Elsevier; Applied Soft Computing; 35; 6-2015; 310-332 1568-4946 |
url |
http://hdl.handle.net/11336/6897 |
identifier_str_mv |
de Paula, Mariano; Avila, Luis Omar; Martinez, Ernesto Carlos; Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes; Elsevier; Applied Soft Computing; 35; 6-2015; 310-332 1568-4946 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1568494615003932 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2015.06.041 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614428306178048 |
score |
13.070432 |