Robust nonlinear principal components
- Autores
- Maronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination.
Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata; Argentina
Fil: Méndez, Fernanda. Universidad Nacional de Rosario; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina - Materia
-
PRINCIPAL CURVES
S-ESTIMATORS
SPLINES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/171628
Ver los metadatos del registro completo
id |
CONICETDig_fc01c2771711f0472eba2fce44d0e071 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/171628 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust nonlinear principal componentsMaronna, Ricardo AntonioMéndez, FernandaYohai, Victor JaimePRINCIPAL CURVESS-ESTIMATORSSPLINEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination.Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata; ArgentinaFil: Méndez, Fernanda. Universidad Nacional de Rosario; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaSpringer2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171628Maronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime; Robust nonlinear principal components; Springer; Statistics And Computing; 25; 2; 3-2015; 439-4480960-31741573-1375CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11222-013-9442-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11222-013-9442-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:34Zoai:ri.conicet.gov.ar:11336/171628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:35.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust nonlinear principal components |
title |
Robust nonlinear principal components |
spellingShingle |
Robust nonlinear principal components Maronna, Ricardo Antonio PRINCIPAL CURVES S-ESTIMATORS SPLINES |
title_short |
Robust nonlinear principal components |
title_full |
Robust nonlinear principal components |
title_fullStr |
Robust nonlinear principal components |
title_full_unstemmed |
Robust nonlinear principal components |
title_sort |
Robust nonlinear principal components |
dc.creator.none.fl_str_mv |
Maronna, Ricardo Antonio Méndez, Fernanda Yohai, Victor Jaime |
author |
Maronna, Ricardo Antonio |
author_facet |
Maronna, Ricardo Antonio Méndez, Fernanda Yohai, Victor Jaime |
author_role |
author |
author2 |
Méndez, Fernanda Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PRINCIPAL CURVES S-ESTIMATORS SPLINES |
topic |
PRINCIPAL CURVES S-ESTIMATORS SPLINES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination. Fil: Maronna, Ricardo Antonio. Universidad Nacional de La Plata; Argentina Fil: Méndez, Fernanda. Universidad Nacional de Rosario; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina |
description |
All known approaches to nonlinear principal components are based on minimizing a quadratic loss, which makes them sensitive to data contamination. A predictive approach in which a spline curve is fit minimizing a residual M-scale is proposed for this problem. For a p-dimensional random sample xi (i=1,…,n) the method finds a function h:R→Rp and a set {t1,…,tn}⊂R that minimize a joint M-scale of the residuals xi−h(ti), where h ranges on the family of splines with a given number of knots. The computation of the curve then becomes the iterative computing of regression S-estimators. The starting values are obtained from a robust linear principal components estimator. A simulation study and the analysis of a real data set indicate that the proposed approach is almost as good as other proposals for row-wise contamination, and is better for element-wise contamination. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/171628 Maronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime; Robust nonlinear principal components; Springer; Statistics And Computing; 25; 2; 3-2015; 439-448 0960-3174 1573-1375 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/171628 |
identifier_str_mv |
Maronna, Ricardo Antonio; Méndez, Fernanda; Yohai, Victor Jaime; Robust nonlinear principal components; Springer; Statistics And Computing; 25; 2; 3-2015; 439-448 0960-3174 1573-1375 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11222-013-9442-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11222-013-9442-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613657027149824 |
score |
13.070432 |