GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices
- Autores
- Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; Miriuka, Santiago Gabriel; Delrieux, Claudio Augusto; Pérez, Maximiliano; Mertelsmann, Roland
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments.
Fil: Isa Jara, Ramiro Fernando. Escuela Superior Politécnica de Chimborazo; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez Sosa, Camilo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Macote Yparraguirre, Erick Leonel. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Lerner, Betiana. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miriuka, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez, Maximiliano. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina
Fil: Mertelsmann, Roland. Albert Ludwigs University of Freiburg; Alemania - Materia
-
APOPTOSIS PROCESS
BIOLOGICAL IMAGE SEGMENTATION
LINEAR REGRESSION
REAL-TIME ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/205127
Ver los metadatos del registro completo
| id |
CONICETDig_fbe9b42bd6e1ab9ce846fe1191b57c73 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/205127 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic DevicesIsa Jara, Ramiro FernandoPérez Sosa, Camilo JoséMacote Yparraguirre, Erick LeonelRevollo Sarmiento, Natalia VeronicaLerner, BetianaMiriuka, Santiago GabrielDelrieux, Claudio AugustoPérez, MaximilianoMertelsmann, RolandAPOPTOSIS PROCESSBIOLOGICAL IMAGE SEGMENTATIONLINEAR REGRESSIONREAL-TIME ANALYSIShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments.Fil: Isa Jara, Ramiro Fernando. Escuela Superior Politécnica de Chimborazo; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez Sosa, Camilo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Macote Yparraguirre, Erick Leonel. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Lerner, Betiana. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miriuka, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez, Maximiliano. Florida International University; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Mertelsmann, Roland. Albert Ludwigs University of Freiburg; AlemaniaI S & T - Soc Imaging Science Technology2022-10-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/205127Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; et al.; GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices; I S & T - Soc Imaging Science Technology; Journal Of Imaging Science And Technology; 8; 10; 14-10-2022; 1-181062-3701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/jimaging8100281info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2313-433X/8/10/281info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T09:10:41Zoai:ri.conicet.gov.ar:11336/205127instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 09:10:41.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| title |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| spellingShingle |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices Isa Jara, Ramiro Fernando APOPTOSIS PROCESS BIOLOGICAL IMAGE SEGMENTATION LINEAR REGRESSION REAL-TIME ANALYSIS |
| title_short |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| title_full |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| title_fullStr |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| title_full_unstemmed |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| title_sort |
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices |
| dc.creator.none.fl_str_mv |
Isa Jara, Ramiro Fernando Pérez Sosa, Camilo José Macote Yparraguirre, Erick Leonel Revollo Sarmiento, Natalia Veronica Lerner, Betiana Miriuka, Santiago Gabriel Delrieux, Claudio Augusto Pérez, Maximiliano Mertelsmann, Roland |
| author |
Isa Jara, Ramiro Fernando |
| author_facet |
Isa Jara, Ramiro Fernando Pérez Sosa, Camilo José Macote Yparraguirre, Erick Leonel Revollo Sarmiento, Natalia Veronica Lerner, Betiana Miriuka, Santiago Gabriel Delrieux, Claudio Augusto Pérez, Maximiliano Mertelsmann, Roland |
| author_role |
author |
| author2 |
Pérez Sosa, Camilo José Macote Yparraguirre, Erick Leonel Revollo Sarmiento, Natalia Veronica Lerner, Betiana Miriuka, Santiago Gabriel Delrieux, Claudio Augusto Pérez, Maximiliano Mertelsmann, Roland |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
APOPTOSIS PROCESS BIOLOGICAL IMAGE SEGMENTATION LINEAR REGRESSION REAL-TIME ANALYSIS |
| topic |
APOPTOSIS PROCESS BIOLOGICAL IMAGE SEGMENTATION LINEAR REGRESSION REAL-TIME ANALYSIS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments. Fil: Isa Jara, Ramiro Fernando. Escuela Superior Politécnica de Chimborazo; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez Sosa, Camilo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina Fil: Macote Yparraguirre, Erick Leonel. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina Fil: Lerner, Betiana. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miriuka, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez, Maximiliano. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina Fil: Mertelsmann, Roland. Albert Ludwigs University of Freiburg; Alemania |
| description |
Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-10-14 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/205127 Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; et al.; GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices; I S & T - Soc Imaging Science Technology; Journal Of Imaging Science And Technology; 8; 10; 14-10-2022; 1-18 1062-3701 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/205127 |
| identifier_str_mv |
Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; et al.; GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices; I S & T - Soc Imaging Science Technology; Journal Of Imaging Science And Technology; 8; 10; 14-10-2022; 1-18 1062-3701 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/jimaging8100281 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2313-433X/8/10/281 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
I S & T - Soc Imaging Science Technology |
| publisher.none.fl_str_mv |
I S & T - Soc Imaging Science Technology |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849873710623752192 |
| score |
13.011256 |