Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
- Autores
- Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.
Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; Argentina
Fil: Norris, Alessandra. University of Florida; Estados Unidos
Fil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kopinke, Daniel. University of Florida; Estados Unidos - Materia
-
SKELETAL MUSCLE
IMAGE ANALYSIS
CELL SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/181627
Ver los metadatos del registro completo
id |
CONICETDig_c4a0eff6f5ca72bf8ca6120cf532e33c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/181627 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscleWaisman, ArielNorris, AlessandraElias Costa, MartinKopinke, DanielSKELETAL MUSCLEIMAGE ANALYSISCELL SEGMENTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; ArgentinaFil: Norris, Alessandra. University of Florida; Estados UnidosFil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kopinke, Daniel. University of Florida; Estados UnidosNature2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181627Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 117932045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-91191-6info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-91191-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:58Zoai:ri.conicet.gov.ar:11336/181627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:58.294CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
title |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
spellingShingle |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle Waisman, Ariel SKELETAL MUSCLE IMAGE ANALYSIS CELL SEGMENTATION |
title_short |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
title_full |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
title_fullStr |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
title_full_unstemmed |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
title_sort |
Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle |
dc.creator.none.fl_str_mv |
Waisman, Ariel Norris, Alessandra Elias Costa, Martin Kopinke, Daniel |
author |
Waisman, Ariel |
author_facet |
Waisman, Ariel Norris, Alessandra Elias Costa, Martin Kopinke, Daniel |
author_role |
author |
author2 |
Norris, Alessandra Elias Costa, Martin Kopinke, Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
SKELETAL MUSCLE IMAGE ANALYSIS CELL SEGMENTATION |
topic |
SKELETAL MUSCLE IMAGE ANALYSIS CELL SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions. Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; Argentina Fil: Norris, Alessandra. University of Florida; Estados Unidos Fil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kopinke, Daniel. University of Florida; Estados Unidos |
description |
Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/181627 Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 11793 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/181627 |
identifier_str_mv |
Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 11793 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-91191-6 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-91191-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981092697571328 |
score |
12.48226 |