Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle

Autores
Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.
Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; Argentina
Fil: Norris, Alessandra. University of Florida; Estados Unidos
Fil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kopinke, Daniel. University of Florida; Estados Unidos
Materia
SKELETAL MUSCLE
IMAGE ANALYSIS
CELL SEGMENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181627

id CONICETDig_c4a0eff6f5ca72bf8ca6120cf532e33c
oai_identifier_str oai:ri.conicet.gov.ar:11336/181627
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automatic and unbiased segmentation and quantification of myofibers in skeletal muscleWaisman, ArielNorris, AlessandraElias Costa, MartinKopinke, DanielSKELETAL MUSCLEIMAGE ANALYSISCELL SEGMENTATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; ArgentinaFil: Norris, Alessandra. University of Florida; Estados UnidosFil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kopinke, Daniel. University of Florida; Estados UnidosNature2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181627Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 117932045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-91191-6info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-91191-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:58Zoai:ri.conicet.gov.ar:11336/181627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:58.294CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
title Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
spellingShingle Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
Waisman, Ariel
SKELETAL MUSCLE
IMAGE ANALYSIS
CELL SEGMENTATION
title_short Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
title_full Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
title_fullStr Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
title_full_unstemmed Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
title_sort Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle
dc.creator.none.fl_str_mv Waisman, Ariel
Norris, Alessandra
Elias Costa, Martin
Kopinke, Daniel
author Waisman, Ariel
author_facet Waisman, Ariel
Norris, Alessandra
Elias Costa, Martin
Kopinke, Daniel
author_role author
author2 Norris, Alessandra
Elias Costa, Martin
Kopinke, Daniel
author2_role author
author
author
dc.subject.none.fl_str_mv SKELETAL MUSCLE
IMAGE ANALYSIS
CELL SEGMENTATION
topic SKELETAL MUSCLE
IMAGE ANALYSIS
CELL SEGMENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.
Fil: Waisman, Ariel. Fundacion P/la Lucha C/enferm.neurologicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Neurociencias.; Argentina
Fil: Norris, Alessandra. University of Florida; Estados Unidos
Fil: Elias Costa, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kopinke, Daniel. University of Florida; Estados Unidos
description Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle strength and function decline. Myofiber size, which is affected by injury and disease, is a critical measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently delineates thousands of individual myofibers outlined by a variety of markers, even within fixed tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a semi-automatic erosion function to correct for the area bias introduced by the different stainings, thereby identifying myofibers as accurately as human experts. We successfully applied our segmentation pipeline to uncover myofiber regeneration differences between two different muscle injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181627
Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 11793
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181627
identifier_str_mv Waisman, Ariel; Norris, Alessandra; Elias Costa, Martin; Kopinke, Daniel; Automatic and unbiased segmentation and quantification of myofibers in skeletal muscle; Nature; Scientific Reports; 11; 1; 12-2021; 1-14; 11793
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-91191-6
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-021-91191-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981092697571328
score 12.48226