Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression
- Autores
- Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database.
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación; Ecuador
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata; Argentina
Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; Argentina - Materia
-
Aperture Filters
Logistic Regression
Ensembles of Classifiers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25904
Ver los metadatos del registro completo
id |
CONICETDig_943947c1b092da8f8c49ba8ede1ad7f5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25904 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic RegressionBenalcazar Palacios, Marco EnriqueBrun, MarcelBallarin, Virginia LauraAperture FiltersLogistic RegressionEnsembles of Classifiershttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database.Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación; EcuadorFil: Brun, Marcel. Universidad Nacional de Mar del Plata; ArgentinaFil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; ArgentinaIOPScience2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25904Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression; IOPScience; Journal of Physics: Conference Series; 477; 1; 10-20131742-65881742-6596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/477/1/012021info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/477/1/012021/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:10Zoai:ri.conicet.gov.ar:11336/25904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:11.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
title |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
spellingShingle |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression Benalcazar Palacios, Marco Enrique Aperture Filters Logistic Regression Ensembles of Classifiers |
title_short |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
title_full |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
title_fullStr |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
title_full_unstemmed |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
title_sort |
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression |
dc.creator.none.fl_str_mv |
Benalcazar Palacios, Marco Enrique Brun, Marcel Ballarin, Virginia Laura |
author |
Benalcazar Palacios, Marco Enrique |
author_facet |
Benalcazar Palacios, Marco Enrique Brun, Marcel Ballarin, Virginia Laura |
author_role |
author |
author2 |
Brun, Marcel Ballarin, Virginia Laura |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Aperture Filters Logistic Regression Ensembles of Classifiers |
topic |
Aperture Filters Logistic Regression Ensembles of Classifiers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database. Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación; Ecuador Fil: Brun, Marcel. Universidad Nacional de Mar del Plata; Argentina Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; Argentina |
description |
Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25904 Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression; IOPScience; Journal of Physics: Conference Series; 477; 1; 10-2013 1742-6588 1742-6596 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25904 |
identifier_str_mv |
Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression; IOPScience; Journal of Physics: Conference Series; 477; 1; 10-2013 1742-6588 1742-6596 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/477/1/012021 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/477/1/012021/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOPScience |
publisher.none.fl_str_mv |
IOPScience |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614199504797696 |
score |
13.070432 |