Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
- Autores
- Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.
Fil: Sonneville, Valentín. Université de Liège; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica - Materia
-
DYNAMIC BEAM
FINITE ELEMENT
LIE GROUP
SPECIAL EUCLIDEAN GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78630
Ver los metadatos del registro completo
id |
CONICETDig_fa12e047439cfc4bca55778ebdcb0d63 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78630 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)Sonneville, ValentínCardona, AlbertoBrüls, OlivierDYNAMIC BEAMFINITE ELEMENTLIE GROUPSPECIAL EUCLIDEAN GROUPhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.Fil: Sonneville, Valentín. Université de Liège; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Brüls, Olivier. Université de Liège; BélgicaDe Gruyter2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78630Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-3290004-0738CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/meceng-2014-0018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:00Zoai:ri.conicet.gov.ar:11336/78630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:00.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
title |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
spellingShingle |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) Sonneville, Valentín DYNAMIC BEAM FINITE ELEMENT LIE GROUP SPECIAL EUCLIDEAN GROUP |
title_short |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
title_full |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
title_fullStr |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
title_full_unstemmed |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
title_sort |
Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3) |
dc.creator.none.fl_str_mv |
Sonneville, Valentín Cardona, Alberto Brüls, Olivier |
author |
Sonneville, Valentín |
author_facet |
Sonneville, Valentín Cardona, Alberto Brüls, Olivier |
author_role |
author |
author2 |
Cardona, Alberto Brüls, Olivier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DYNAMIC BEAM FINITE ELEMENT LIE GROUP SPECIAL EUCLIDEAN GROUP |
topic |
DYNAMIC BEAM FINITE ELEMENT LIE GROUP SPECIAL EUCLIDEAN GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities. Fil: Sonneville, Valentín. Université de Liège; Bélgica Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Brüls, Olivier. Université de Liège; Bélgica |
description |
Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78630 Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-329 0004-0738 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78630 |
identifier_str_mv |
Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-329 0004-0738 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2478/meceng-2014-0018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614062739030016 |
score |
13.070432 |