Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)

Autores
Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.
Fil: Sonneville, Valentín. Université de Liège; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica
Materia
DYNAMIC BEAM
FINITE ELEMENT
LIE GROUP
SPECIAL EUCLIDEAN GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78630

id CONICETDig_fa12e047439cfc4bca55778ebdcb0d63
oai_identifier_str oai:ri.conicet.gov.ar:11336/78630
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)Sonneville, ValentínCardona, AlbertoBrüls, OlivierDYNAMIC BEAMFINITE ELEMENTLIE GROUPSPECIAL EUCLIDEAN GROUPhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.Fil: Sonneville, Valentín. Université de Liège; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Brüls, Olivier. Université de Liège; BélgicaDe Gruyter2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78630Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-3290004-0738CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/meceng-2014-0018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:00Zoai:ri.conicet.gov.ar:11336/78630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:00.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
title Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
spellingShingle Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
Sonneville, Valentín
DYNAMIC BEAM
FINITE ELEMENT
LIE GROUP
SPECIAL EUCLIDEAN GROUP
title_short Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
title_full Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
title_fullStr Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
title_full_unstemmed Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
title_sort Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3)
dc.creator.none.fl_str_mv Sonneville, Valentín
Cardona, Alberto
Brüls, Olivier
author Sonneville, Valentín
author_facet Sonneville, Valentín
Cardona, Alberto
Brüls, Olivier
author_role author
author2 Cardona, Alberto
Brüls, Olivier
author2_role author
author
dc.subject.none.fl_str_mv DYNAMIC BEAM
FINITE ELEMENT
LIE GROUP
SPECIAL EUCLIDEAN GROUP
topic DYNAMIC BEAM
FINITE ELEMENT
LIE GROUP
SPECIAL EUCLIDEAN GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.
Fil: Sonneville, Valentín. Université de Liège; Bélgica
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, Olivier. Université de Liège; Bélgica
description Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78630
Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-329
0004-0738
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78630
identifier_str_mv Sonneville, Valentín; Cardona, Alberto; Brüls, Olivier; Geometric Interpretation of a Non-linear Beam Finite Element on the Lie Group SE(3); De Gruyter; Archive of Mechanical Engineering; 61; 2; 8-2014; 305-329
0004-0738
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2478/meceng-2014-0018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614062739030016
score 13.070432