Geometrically exact beam finite element formulated on the special Euclidean group SE(3)
- Autores
- Sonneville, V.; Cardona, Alberto; Brüls, O.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper describes a dynamic formulation of a straight beam finite element in the setting of the special Euclidean group SE(3). First, the static and dynamic equilibrium equations are derived in this framework from variational principles. Then, a non-linear interpolation formula using the exponential map is introduced. It is shown that this framework leads to a natural coupling in the interpolation of the position and rotation variables. Next, the discretized internal and inertia forces are developed. The semi-discrete equations of motion take the form of a second-order ordinary differential equation on a Lie group, which is solved using a Lie group time integration scheme. It is remarkable that no parameterization of the nodal variables needs to be introduced and that the proposed Lie group framework leads to a compact and easy-to-implement formulation. Some important numerical and theoretical aspects leading to a computationally efficient strategy are highlighted and discussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices under rigid body motions and a locking free element. The proposed formulation is successfully tested in several numerical static and dynamic examples.
Fil: Sonneville, V.. Université de Liège; Bélgica
Fil: Cardona, Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Brüls, O.. Université de Liège; Bélgica - Materia
-
Dynamic Beam
Finite Element
Lie Group
Special Euclidean Group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78602
Ver los metadatos del registro completo
| id |
CONICETDig_ac8c2e722f4efbb51ea707fc640f5549 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78602 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3)Sonneville, V.Cardona, AlbertoBrüls, O.Dynamic BeamFinite ElementLie GroupSpecial Euclidean Grouphttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper describes a dynamic formulation of a straight beam finite element in the setting of the special Euclidean group SE(3). First, the static and dynamic equilibrium equations are derived in this framework from variational principles. Then, a non-linear interpolation formula using the exponential map is introduced. It is shown that this framework leads to a natural coupling in the interpolation of the position and rotation variables. Next, the discretized internal and inertia forces are developed. The semi-discrete equations of motion take the form of a second-order ordinary differential equation on a Lie group, which is solved using a Lie group time integration scheme. It is remarkable that no parameterization of the nodal variables needs to be introduced and that the proposed Lie group framework leads to a compact and easy-to-implement formulation. Some important numerical and theoretical aspects leading to a computationally efficient strategy are highlighted and discussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices under rigid body motions and a locking free element. The proposed formulation is successfully tested in several numerical static and dynamic examples.Fil: Sonneville, V.. Université de Liège; BélgicaFil: Cardona, Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Brüls, O.. Université de Liège; BélgicaElsevier Science Sa2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78602Sonneville, V.; Cardona, Alberto; Brüls, O.; Geometrically exact beam finite element formulated on the special Euclidean group SE(3); Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 268; 3-2014; 451-4740045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2013.10.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:46:29Zoai:ri.conicet.gov.ar:11336/78602instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:46:30.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| title |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| spellingShingle |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) Sonneville, V. Dynamic Beam Finite Element Lie Group Special Euclidean Group |
| title_short |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| title_full |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| title_fullStr |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| title_full_unstemmed |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| title_sort |
Geometrically exact beam finite element formulated on the special Euclidean group SE(3) |
| dc.creator.none.fl_str_mv |
Sonneville, V. Cardona, Alberto Brüls, O. |
| author |
Sonneville, V. |
| author_facet |
Sonneville, V. Cardona, Alberto Brüls, O. |
| author_role |
author |
| author2 |
Cardona, Alberto Brüls, O. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Dynamic Beam Finite Element Lie Group Special Euclidean Group |
| topic |
Dynamic Beam Finite Element Lie Group Special Euclidean Group |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
This paper describes a dynamic formulation of a straight beam finite element in the setting of the special Euclidean group SE(3). First, the static and dynamic equilibrium equations are derived in this framework from variational principles. Then, a non-linear interpolation formula using the exponential map is introduced. It is shown that this framework leads to a natural coupling in the interpolation of the position and rotation variables. Next, the discretized internal and inertia forces are developed. The semi-discrete equations of motion take the form of a second-order ordinary differential equation on a Lie group, which is solved using a Lie group time integration scheme. It is remarkable that no parameterization of the nodal variables needs to be introduced and that the proposed Lie group framework leads to a compact and easy-to-implement formulation. Some important numerical and theoretical aspects leading to a computationally efficient strategy are highlighted and discussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices under rigid body motions and a locking free element. The proposed formulation is successfully tested in several numerical static and dynamic examples. Fil: Sonneville, V.. Université de Liège; Bélgica Fil: Cardona, Alberto. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Brüls, O.. Université de Liège; Bélgica |
| description |
This paper describes a dynamic formulation of a straight beam finite element in the setting of the special Euclidean group SE(3). First, the static and dynamic equilibrium equations are derived in this framework from variational principles. Then, a non-linear interpolation formula using the exponential map is introduced. It is shown that this framework leads to a natural coupling in the interpolation of the position and rotation variables. Next, the discretized internal and inertia forces are developed. The semi-discrete equations of motion take the form of a second-order ordinary differential equation on a Lie group, which is solved using a Lie group time integration scheme. It is remarkable that no parameterization of the nodal variables needs to be introduced and that the proposed Lie group framework leads to a compact and easy-to-implement formulation. Some important numerical and theoretical aspects leading to a computationally efficient strategy are highlighted and discussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices under rigid body motions and a locking free element. The proposed formulation is successfully tested in several numerical static and dynamic examples. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78602 Sonneville, V.; Cardona, Alberto; Brüls, O.; Geometrically exact beam finite element formulated on the special Euclidean group SE(3); Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 268; 3-2014; 451-474 0045-7825 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/78602 |
| identifier_str_mv |
Sonneville, V.; Cardona, Alberto; Brüls, O.; Geometrically exact beam finite element formulated on the special Euclidean group SE(3); Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 268; 3-2014; 451-474 0045-7825 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2013.10.008 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
| publisher.none.fl_str_mv |
Elsevier Science Sa |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426452402733056 |
| score |
13.10058 |