Performance of annealed hybride silicon heterojunctions: a numerical computer study
- Autores
- Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Marsal, L. F.. Universitat Rovira I Virgili; España
Fil: Pallarès, J.. Universitat Rovira I Virgili; España - Materia
-
Hybride Solar Cells
Amorphous silicon
Crystalline Silicon
Annealing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23586
Ver los metadatos del registro completo
id |
CONICETDig_f9a8cdac46e7b4e1687a2fcb18e76fc5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23586 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Performance of annealed hybride silicon heterojunctions: a numerical computer studyRubinelli, Francisco AlbertoMarsal, L. F.Pallarès, J.Hybride Solar CellsAmorphous siliconCrystalline SiliconAnnealinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Marsal, L. F.. Universitat Rovira I Virgili; EspañaFil: Pallarès, J.. Universitat Rovira I Virgili; EspañaAmerican Institute of Physics2005-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23586Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-349130021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.1836006info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.1836006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:09Zoai:ri.conicet.gov.ar:11336/23586instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:09.939CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
title |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
spellingShingle |
Performance of annealed hybride silicon heterojunctions: a numerical computer study Rubinelli, Francisco Alberto Hybride Solar Cells Amorphous silicon Crystalline Silicon Annealing |
title_short |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
title_full |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
title_fullStr |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
title_full_unstemmed |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
title_sort |
Performance of annealed hybride silicon heterojunctions: a numerical computer study |
dc.creator.none.fl_str_mv |
Rubinelli, Francisco Alberto Marsal, L. F. Pallarès, J. |
author |
Rubinelli, Francisco Alberto |
author_facet |
Rubinelli, Francisco Alberto Marsal, L. F. Pallarès, J. |
author_role |
author |
author2 |
Marsal, L. F. Pallarès, J. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hybride Solar Cells Amorphous silicon Crystalline Silicon Annealing |
topic |
Hybride Solar Cells Amorphous silicon Crystalline Silicon Annealing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free. Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Marsal, L. F.. Universitat Rovira I Virgili; España Fil: Pallarès, J.. Universitat Rovira I Virgili; España |
description |
The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23586 Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-34913 0021-8979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23586 |
identifier_str_mv |
Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-34913 0021-8979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.1836006 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.1836006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269679837511680 |
score |
12.885934 |