Performance of annealed hybride silicon heterojunctions: a numerical computer study

Autores
Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Marsal, L. F.. Universitat Rovira I Virgili; España
Fil: Pallarès, J.. Universitat Rovira I Virgili; España
Materia
Hybride Solar Cells
Amorphous silicon
Crystalline Silicon
Annealing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23586

id CONICETDig_f9a8cdac46e7b4e1687a2fcb18e76fc5
oai_identifier_str oai:ri.conicet.gov.ar:11336/23586
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Performance of annealed hybride silicon heterojunctions: a numerical computer studyRubinelli, Francisco AlbertoMarsal, L. F.Pallarès, J.Hybride Solar CellsAmorphous siliconCrystalline SiliconAnnealinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Marsal, L. F.. Universitat Rovira I Virgili; EspañaFil: Pallarès, J.. Universitat Rovira I Virgili; EspañaAmerican Institute of Physics2005-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23586Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-349130021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.1836006info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.1836006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:09Zoai:ri.conicet.gov.ar:11336/23586instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:09.939CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Performance of annealed hybride silicon heterojunctions: a numerical computer study
title Performance of annealed hybride silicon heterojunctions: a numerical computer study
spellingShingle Performance of annealed hybride silicon heterojunctions: a numerical computer study
Rubinelli, Francisco Alberto
Hybride Solar Cells
Amorphous silicon
Crystalline Silicon
Annealing
title_short Performance of annealed hybride silicon heterojunctions: a numerical computer study
title_full Performance of annealed hybride silicon heterojunctions: a numerical computer study
title_fullStr Performance of annealed hybride silicon heterojunctions: a numerical computer study
title_full_unstemmed Performance of annealed hybride silicon heterojunctions: a numerical computer study
title_sort Performance of annealed hybride silicon heterojunctions: a numerical computer study
dc.creator.none.fl_str_mv Rubinelli, Francisco Alberto
Marsal, L. F.
Pallarès, J.
author Rubinelli, Francisco Alberto
author_facet Rubinelli, Francisco Alberto
Marsal, L. F.
Pallarès, J.
author_role author
author2 Marsal, L. F.
Pallarès, J.
author2_role author
author
dc.subject.none.fl_str_mv Hybride Solar Cells
Amorphous silicon
Crystalline Silicon
Annealing
topic Hybride Solar Cells
Amorphous silicon
Crystalline Silicon
Annealing
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Marsal, L. F.. Universitat Rovira I Virgili; España
Fil: Pallarès, J.. Universitat Rovira I Virgili; España
description The performance of the standard hydrogenated amorphous silicon carbon–crystalline silicon solar cell is extensively compared with the performance of a hybrid structure subjected to a high-temperature annealing processing. Our analysis indicates that high-temperature-annealed heterojunctions show more robustness in the presence of energy offsets and defective amorphous-crystalline interfaces. Annealed hybrid cells are also less vulnerable to the negative impact of amorphous silicon carbon doped layers with poor electrical properties. Furthermore, annealed structures have the potential to generate higher efficiencies than conventional heterojunctions regardless of the wafer quality. The presence of boron at the amorphous-crystalline interface and in the wafer front region plays an important role in annealed hybrid structures that are made with low-quality wafers or where there is a highly defective amorphous-crystalline interface. In this scenario, a linear boron profile in the wafer front region is more appropriate, for which there is an optimum thickness. For low defect amorphous-crystalline interfaces and high-quality wafers, a boron exponential profile is more appropriate when boron creates additional defects in the front region of the wafer. The shape of the boron profile becomes less relevant when the boron does not add additional defects to the front region of high-quality wafers and when the amorphous-crystalline interface is low defect or defect-free.
publishDate 2005
dc.date.none.fl_str_mv 2005-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23586
Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-34913
0021-8979
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23586
identifier_str_mv Rubinelli, Francisco Alberto; Marsal, L. F.; Pallarès, J.; Performance of annealed hybride silicon heterojunctions: a numerical computer study; American Institute of Physics; Journal of Applied Physics; 97; 3; 1-2005; 34904-34913
0021-8979
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.1836006
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.1836006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269679837511680
score 12.885934