Paths of inner-related functions

Autores
Nicolau, Artur; Suarez, Fernando Daniel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.
Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; España
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Carlesonnewman Blaschke Products;
Connected Components
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17924

id CONICETDig_f87753928492d686765466e754e2b43d
oai_identifier_str oai:ri.conicet.gov.ar:11336/17924
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Paths of inner-related functionsNicolau, ArturSuarez, Fernando DanielCarlesonnewman Blaschke Products;Connected Componentshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; EspañaFil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17924Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-37740022-1236enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123612000493info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.01.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:52:11Zoai:ri.conicet.gov.ar:11336/17924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:52:11.208CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Paths of inner-related functions
title Paths of inner-related functions
spellingShingle Paths of inner-related functions
Nicolau, Artur
Carlesonnewman Blaschke Products;
Connected Components
title_short Paths of inner-related functions
title_full Paths of inner-related functions
title_fullStr Paths of inner-related functions
title_full_unstemmed Paths of inner-related functions
title_sort Paths of inner-related functions
dc.creator.none.fl_str_mv Nicolau, Artur
Suarez, Fernando Daniel
author Nicolau, Artur
author_facet Nicolau, Artur
Suarez, Fernando Daniel
author_role author
author2 Suarez, Fernando Daniel
author2_role author
dc.subject.none.fl_str_mv Carlesonnewman Blaschke Products;
Connected Components
topic Carlesonnewman Blaschke Products;
Connected Components
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.
Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; España
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.
publishDate 2012
dc.date.none.fl_str_mv 2012-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17924
Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774
0022-1236
url http://hdl.handle.net/11336/17924
identifier_str_mv Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774
0022-1236
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123612000493
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.01.026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847978244993712128
score 13.087074