Paths of inner-related functions
- Autores
- Nicolau, Artur; Suarez, Fernando Daniel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.
Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; España
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Carlesonnewman Blaschke Products;
Connected Components - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17924
Ver los metadatos del registro completo
| id |
CONICETDig_f87753928492d686765466e754e2b43d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17924 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Paths of inner-related functionsNicolau, ArturSuarez, Fernando DanielCarlesonnewman Blaschke Products;Connected Componentshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; EspañaFil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaAcademic Press Inc Elsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17924Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-37740022-1236enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123612000493info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.01.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:52:11Zoai:ri.conicet.gov.ar:11336/17924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:52:11.208CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Paths of inner-related functions |
| title |
Paths of inner-related functions |
| spellingShingle |
Paths of inner-related functions Nicolau, Artur Carlesonnewman Blaschke Products; Connected Components |
| title_short |
Paths of inner-related functions |
| title_full |
Paths of inner-related functions |
| title_fullStr |
Paths of inner-related functions |
| title_full_unstemmed |
Paths of inner-related functions |
| title_sort |
Paths of inner-related functions |
| dc.creator.none.fl_str_mv |
Nicolau, Artur Suarez, Fernando Daniel |
| author |
Nicolau, Artur |
| author_facet |
Nicolau, Artur Suarez, Fernando Daniel |
| author_role |
author |
| author2 |
Suarez, Fernando Daniel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Carlesonnewman Blaschke Products; Connected Components |
| topic |
Carlesonnewman Blaschke Products; Connected Components |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras. Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; España Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
| description |
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17924 Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774 0022-1236 |
| url |
http://hdl.handle.net/11336/17924 |
| identifier_str_mv |
Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774 0022-1236 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123612000493 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2012.01.026 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978244993712128 |
| score |
13.087074 |