Orbits of non-elliptic disc automorphisms on H p

Autores
Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; España
Fil: Gorkin, Pamela. Bucknell University; Estados Unidos
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Blaschke Products
Invariant Subspaces
Eigenfunctions of Composition Operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17757

id CONICETDig_728d0b42df27ec8bf809649143994812
oai_identifier_str oai:ri.conicet.gov.ar:11336/17757
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Orbits of non-elliptic disc automorphisms on H pGallardo Gutiérrez, Eva A.Gorkin, PamelaSuarez, Fernando DanielBlaschke ProductsInvariant SubspacesEigenfunctions of Composition Operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; EspañaFil: Gorkin, Pamela. Bucknell University; Estados UnidosFil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier Inc2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17757Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-10260022-247Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.10.048info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:02:39Zoai:ri.conicet.gov.ar:11336/17757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:02:39.835CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Orbits of non-elliptic disc automorphisms on H p
title Orbits of non-elliptic disc automorphisms on H p
spellingShingle Orbits of non-elliptic disc automorphisms on H p
Gallardo Gutiérrez, Eva A.
Blaschke Products
Invariant Subspaces
Eigenfunctions of Composition Operators
title_short Orbits of non-elliptic disc automorphisms on H p
title_full Orbits of non-elliptic disc automorphisms on H p
title_fullStr Orbits of non-elliptic disc automorphisms on H p
title_full_unstemmed Orbits of non-elliptic disc automorphisms on H p
title_sort Orbits of non-elliptic disc automorphisms on H p
dc.creator.none.fl_str_mv Gallardo Gutiérrez, Eva A.
Gorkin, Pamela
Suarez, Fernando Daniel
author Gallardo Gutiérrez, Eva A.
author_facet Gallardo Gutiérrez, Eva A.
Gorkin, Pamela
Suarez, Fernando Daniel
author_role author
author2 Gorkin, Pamela
Suarez, Fernando Daniel
author2_role author
author
dc.subject.none.fl_str_mv Blaschke Products
Invariant Subspaces
Eigenfunctions of Composition Operators
topic Blaschke Products
Invariant Subspaces
Eigenfunctions of Composition Operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; España
Fil: Gorkin, Pamela. Bucknell University; Estados Unidos
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17757
Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026
0022-247X
url http://hdl.handle.net/11336/17757
identifier_str_mv Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026
0022-247X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.10.048
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977484285378560
score 13.087074