Orbits of non-elliptic disc automorphisms on H p
- Autores
- Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; España
Fil: Gorkin, Pamela. Bucknell University; Estados Unidos
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Blaschke Products
Invariant Subspaces
Eigenfunctions of Composition Operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17757
Ver los metadatos del registro completo
| id |
CONICETDig_728d0b42df27ec8bf809649143994812 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17757 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Orbits of non-elliptic disc automorphisms on H pGallardo Gutiérrez, Eva A.Gorkin, PamelaSuarez, Fernando DanielBlaschke ProductsInvariant SubspacesEigenfunctions of Composition Operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; EspañaFil: Gorkin, Pamela. Bucknell University; Estados UnidosFil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier Inc2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17757Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-10260022-247Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.10.048info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:02:39Zoai:ri.conicet.gov.ar:11336/17757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:02:39.835CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Orbits of non-elliptic disc automorphisms on H p |
| title |
Orbits of non-elliptic disc automorphisms on H p |
| spellingShingle |
Orbits of non-elliptic disc automorphisms on H p Gallardo Gutiérrez, Eva A. Blaschke Products Invariant Subspaces Eigenfunctions of Composition Operators |
| title_short |
Orbits of non-elliptic disc automorphisms on H p |
| title_full |
Orbits of non-elliptic disc automorphisms on H p |
| title_fullStr |
Orbits of non-elliptic disc automorphisms on H p |
| title_full_unstemmed |
Orbits of non-elliptic disc automorphisms on H p |
| title_sort |
Orbits of non-elliptic disc automorphisms on H p |
| dc.creator.none.fl_str_mv |
Gallardo Gutiérrez, Eva A. Gorkin, Pamela Suarez, Fernando Daniel |
| author |
Gallardo Gutiérrez, Eva A. |
| author_facet |
Gallardo Gutiérrez, Eva A. Gorkin, Pamela Suarez, Fernando Daniel |
| author_role |
author |
| author2 |
Gorkin, Pamela Suarez, Fernando Daniel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Blaschke Products Invariant Subspaces Eigenfunctions of Composition Operators |
| topic |
Blaschke Products Invariant Subspaces Eigenfunctions of Composition Operators |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞. Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; España Fil: Gorkin, Pamela. Bucknell University; Estados Unidos Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
| description |
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17757 Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026 0022-247X |
| url |
http://hdl.handle.net/11336/17757 |
| identifier_str_mv |
Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026 0022-247X |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.10.048 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihub |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Inc |
| publisher.none.fl_str_mv |
Elsevier Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977484285378560 |
| score |
13.087074 |