Orbits of non-elliptic disc automorphisms on H p

Autores
Gallardo-Gutiérrez, E.A.; Gorkin, P.; Suárez, D.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
Fuente
J. Math. Anal. Appl. 2012;388(2):1013-1026
Materia
Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v388_n2_p1013_GallardoGutierrez

id BDUBAFCEN_59ec095be3e0e759f3836c73b8fbcf59
oai_identifier_str paperaa:paper_0022247X_v388_n2_p1013_GallardoGutierrez
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Orbits of non-elliptic disc automorphisms on H pGallardo-Gutiérrez, E.A.Gorkin, P.Suárez, D.Blaschke productsEigenfunctions of composition operatorsInvariant subspacesMotivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrezJ. Math. Anal. Appl. 2012;388(2):1013-1026reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:43Zpaperaa:paper_0022247X_v388_n2_p1013_GallardoGutierrezInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:44.736Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Orbits of non-elliptic disc automorphisms on H p
title Orbits of non-elliptic disc automorphisms on H p
spellingShingle Orbits of non-elliptic disc automorphisms on H p
Gallardo-Gutiérrez, E.A.
Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
title_short Orbits of non-elliptic disc automorphisms on H p
title_full Orbits of non-elliptic disc automorphisms on H p
title_fullStr Orbits of non-elliptic disc automorphisms on H p
title_full_unstemmed Orbits of non-elliptic disc automorphisms on H p
title_sort Orbits of non-elliptic disc automorphisms on H p
dc.creator.none.fl_str_mv Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
author Gallardo-Gutiérrez, E.A.
author_facet Gallardo-Gutiérrez, E.A.
Gorkin, P.
Suárez, D.
author_role author
author2 Gorkin, P.
Suárez, D.
author2_role author
author
dc.subject.none.fl_str_mv Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
topic Blaschke products
Eigenfunctions of composition operators
Invariant subspaces
dc.description.none.fl_txt_mv Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
description Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
url http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2012;388(2):1013-1026
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1848046092938117120
score 13.087074