Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection
- Autores
- Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; Oliveira Freire, Eduardo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola–Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers. Performances of both detectors were assessed using real images in both visible and infrared spectra. YOLO consistently demonstrates 1 scores below 26% in both spectra, while VJ’s scores lie in the interval from 38% to 61%. This performance discrepancy is discussed in view of paradigms’ strengths and weaknesses, whereas the relatively high scores of at least one detector are taken as empirical evidence in favor of the proposed data augmentation approach.
Fil: Santos, David O.. Universidade Federal de Campina Grande; Brasil
Fil: Montalvão, Jugurta. Universidade Federal de Sergipe; Brasil
Fil: Araujo, Charles A. C.. Electrical Operation, Eneva S.a; Brasil
Fil: Lebre, Ulisses D. E. S.. Electrical Operation, Eneva S.a; Brasil
Fil: Ferreira, Tarso V.. Universidade Federal de Sergipe; Brasil
Fil: Oliveira Freire, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidade Federal de Sergipe; Brasil - Materia
-
Electrical equipment
Infrared spectrum
Machine vision
Object detection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260572
Ver los metadatos del registro completo
id |
CONICETDig_f82b4588796cbff6fb1cb7b70f2d44d9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260572 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment DetectionSantos, David O.Montalvão, JugurtaAraujo, Charles A. C.Lebre, Ulisses D. E. S.Ferreira, Tarso V.Oliveira Freire, EduardoElectrical equipmentInfrared spectrumMachine visionObject detectionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola–Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers. Performances of both detectors were assessed using real images in both visible and infrared spectra. YOLO consistently demonstrates 1 scores below 26% in both spectra, while VJ’s scores lie in the interval from 38% to 61%. This performance discrepancy is discussed in view of paradigms’ strengths and weaknesses, whereas the relatively high scores of at least one detector are taken as empirical evidence in favor of the proposed data augmentation approach.Fil: Santos, David O.. Universidade Federal de Campina Grande; BrasilFil: Montalvão, Jugurta. Universidade Federal de Sergipe; BrasilFil: Araujo, Charles A. C.. Electrical Operation, Eneva S.a; BrasilFil: Lebre, Ulisses D. E. S.. Electrical Operation, Eneva S.a; BrasilFil: Ferreira, Tarso V.. Universidade Federal de Sergipe; BrasilFil: Oliveira Freire, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidade Federal de Sergipe; BrasilMultidisciplinary Digital Publishing Institute2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260572Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; et al.; Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection; Multidisciplinary Digital Publishing Institute; Sensors; 24; 13; 6-2024; 1-201424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/24/13/4219info:eu-repo/semantics/altIdentifier/doi/10.3390/s24134219info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:55Zoai:ri.conicet.gov.ar:11336/260572instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:55.855CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
title |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
spellingShingle |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection Santos, David O. Electrical equipment Infrared spectrum Machine vision Object detection |
title_short |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
title_full |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
title_fullStr |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
title_full_unstemmed |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
title_sort |
Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection |
dc.creator.none.fl_str_mv |
Santos, David O. Montalvão, Jugurta Araujo, Charles A. C. Lebre, Ulisses D. E. S. Ferreira, Tarso V. Oliveira Freire, Eduardo |
author |
Santos, David O. |
author_facet |
Santos, David O. Montalvão, Jugurta Araujo, Charles A. C. Lebre, Ulisses D. E. S. Ferreira, Tarso V. Oliveira Freire, Eduardo |
author_role |
author |
author2 |
Montalvão, Jugurta Araujo, Charles A. C. Lebre, Ulisses D. E. S. Ferreira, Tarso V. Oliveira Freire, Eduardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Electrical equipment Infrared spectrum Machine vision Object detection |
topic |
Electrical equipment Infrared spectrum Machine vision Object detection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola–Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers. Performances of both detectors were assessed using real images in both visible and infrared spectra. YOLO consistently demonstrates 1 scores below 26% in both spectra, while VJ’s scores lie in the interval from 38% to 61%. This performance discrepancy is discussed in view of paradigms’ strengths and weaknesses, whereas the relatively high scores of at least one detector are taken as empirical evidence in favor of the proposed data augmentation approach. Fil: Santos, David O.. Universidade Federal de Campina Grande; Brasil Fil: Montalvão, Jugurta. Universidade Federal de Sergipe; Brasil Fil: Araujo, Charles A. C.. Electrical Operation, Eneva S.a; Brasil Fil: Lebre, Ulisses D. E. S.. Electrical Operation, Eneva S.a; Brasil Fil: Ferreira, Tarso V.. Universidade Federal de Sergipe; Brasil Fil: Oliveira Freire, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidade Federal de Sergipe; Brasil |
description |
This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola–Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers. Performances of both detectors were assessed using real images in both visible and infrared spectra. YOLO consistently demonstrates 1 scores below 26% in both spectra, while VJ’s scores lie in the interval from 38% to 61%. This performance discrepancy is discussed in view of paradigms’ strengths and weaknesses, whereas the relatively high scores of at least one detector are taken as empirical evidence in favor of the proposed data augmentation approach. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260572 Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; et al.; Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection; Multidisciplinary Digital Publishing Institute; Sensors; 24; 13; 6-2024; 1-20 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260572 |
identifier_str_mv |
Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; et al.; Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection; Multidisciplinary Digital Publishing Institute; Sensors; 24; 13; 6-2024; 1-20 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/24/13/4219 info:eu-repo/semantics/altIdentifier/doi/10.3390/s24134219 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083118803451904 |
score |
13.22299 |