Video summarisation by deep visual and categorical diversity
- Autores
- Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio Augusto
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The authors propose a video-summarisation method based on visual and categorical diversities using pre-trained deep visual and categorical models. Their method extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word-embedding matrix. Using visual and categorical information they obtain a video diversity estimation, which is used as an importance score to select segments from the input video that best describes it. Their method also allows performing queries during the search process, in this way personalising the resulting video summaries according to the particular intended purposes. The performance of the method is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. They then compare it with other state-of-the-art proposals in video summarisation using a data-driven approach with the public dataset SumMe, which contains annotated videos with per-fragment importance. The results show that their method outperforms other proposals in most of the examples. As an additional advantage, their method requires a simple and direct implementation that does not require a training stage.
Fil: Atencio, Pedro. Instituto Tecnológico Metropolitano.; Colombia
Fil: Sanchez Torres, German. Universidad del Magdalena; Colombia
Fil: Branch, John. Universidad Nacional de Colombia. Sede Medellin. Facultad de Minas; Colombia
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
VIDEO SUMMARIZATION METHOD
TRANSFER LEARNING
DCN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/107468
Ver los metadatos del registro completo
id |
CONICETDig_f823a3138f33d992f3e7b1bb2c84fc9e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/107468 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Video summarisation by deep visual and categorical diversityAtencio, PedroSanchez Torres, GermanBranch, JohnDelrieux, Claudio AugustoVIDEO SUMMARIZATION METHODTRANSFER LEARNINGDCNhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The authors propose a video-summarisation method based on visual and categorical diversities using pre-trained deep visual and categorical models. Their method extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word-embedding matrix. Using visual and categorical information they obtain a video diversity estimation, which is used as an importance score to select segments from the input video that best describes it. Their method also allows performing queries during the search process, in this way personalising the resulting video summaries according to the particular intended purposes. The performance of the method is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. They then compare it with other state-of-the-art proposals in video summarisation using a data-driven approach with the public dataset SumMe, which contains annotated videos with per-fragment importance. The results show that their method outperforms other proposals in most of the examples. As an additional advantage, their method requires a simple and direct implementation that does not require a training stage.Fil: Atencio, Pedro. Instituto Tecnológico Metropolitano.; ColombiaFil: Sanchez Torres, German. Universidad del Magdalena; ColombiaFil: Branch, John. Universidad Nacional de Colombia. Sede Medellin. Facultad de Minas; ColombiaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaInstitution of Engineering and Technology2019-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/107468Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio Augusto; Video summarisation by deep visual and categorical diversity; Institution of Engineering and Technology; Iet Computer Vision; 13; 6; 13-5-2019; 569-5771751-96321751-9640CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2018.5436info:eu-repo/semantics/altIdentifier/doi/ 10.1049/iet-cvi.2018.5436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:27Zoai:ri.conicet.gov.ar:11336/107468instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:28.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Video summarisation by deep visual and categorical diversity |
title |
Video summarisation by deep visual and categorical diversity |
spellingShingle |
Video summarisation by deep visual and categorical diversity Atencio, Pedro VIDEO SUMMARIZATION METHOD TRANSFER LEARNING DCN |
title_short |
Video summarisation by deep visual and categorical diversity |
title_full |
Video summarisation by deep visual and categorical diversity |
title_fullStr |
Video summarisation by deep visual and categorical diversity |
title_full_unstemmed |
Video summarisation by deep visual and categorical diversity |
title_sort |
Video summarisation by deep visual and categorical diversity |
dc.creator.none.fl_str_mv |
Atencio, Pedro Sanchez Torres, German Branch, John Delrieux, Claudio Augusto |
author |
Atencio, Pedro |
author_facet |
Atencio, Pedro Sanchez Torres, German Branch, John Delrieux, Claudio Augusto |
author_role |
author |
author2 |
Sanchez Torres, German Branch, John Delrieux, Claudio Augusto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
VIDEO SUMMARIZATION METHOD TRANSFER LEARNING DCN |
topic |
VIDEO SUMMARIZATION METHOD TRANSFER LEARNING DCN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The authors propose a video-summarisation method based on visual and categorical diversities using pre-trained deep visual and categorical models. Their method extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word-embedding matrix. Using visual and categorical information they obtain a video diversity estimation, which is used as an importance score to select segments from the input video that best describes it. Their method also allows performing queries during the search process, in this way personalising the resulting video summaries according to the particular intended purposes. The performance of the method is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. They then compare it with other state-of-the-art proposals in video summarisation using a data-driven approach with the public dataset SumMe, which contains annotated videos with per-fragment importance. The results show that their method outperforms other proposals in most of the examples. As an additional advantage, their method requires a simple and direct implementation that does not require a training stage. Fil: Atencio, Pedro. Instituto Tecnológico Metropolitano.; Colombia Fil: Sanchez Torres, German. Universidad del Magdalena; Colombia Fil: Branch, John. Universidad Nacional de Colombia. Sede Medellin. Facultad de Minas; Colombia Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
The authors propose a video-summarisation method based on visual and categorical diversities using pre-trained deep visual and categorical models. Their method extracts visual and categorical features from a pre-trained deep convolutional network (DCN) and a pre-trained word-embedding matrix. Using visual and categorical information they obtain a video diversity estimation, which is used as an importance score to select segments from the input video that best describes it. Their method also allows performing queries during the search process, in this way personalising the resulting video summaries according to the particular intended purposes. The performance of the method is evaluated using different pre-trained DCN models in order to select the architecture with the best throughput. They then compare it with other state-of-the-art proposals in video summarisation using a data-driven approach with the public dataset SumMe, which contains annotated videos with per-fragment importance. The results show that their method outperforms other proposals in most of the examples. As an additional advantage, their method requires a simple and direct implementation that does not require a training stage. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/107468 Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio Augusto; Video summarisation by deep visual and categorical diversity; Institution of Engineering and Technology; Iet Computer Vision; 13; 6; 13-5-2019; 569-577 1751-9632 1751-9640 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/107468 |
identifier_str_mv |
Atencio, Pedro; Sanchez Torres, German; Branch, John; Delrieux, Claudio Augusto; Video summarisation by deep visual and categorical diversity; Institution of Engineering and Technology; Iet Computer Vision; 13; 6; 13-5-2019; 569-577 1751-9632 1751-9640 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2018.5436 info:eu-repo/semantics/altIdentifier/doi/ 10.1049/iet-cvi.2018.5436 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268667821162496 |
score |
13.13397 |