An open source quantitative evaluation framework for automatic video summarization algorithms
- Autores
- Balmaceda, Leandro; Diaz, Ariel I.; Rostagno, Adrian; Aggio, Santiago Lujan; Blanco, Anibal Manuel; Iparraguirre, Javier
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented.
Fil: Balmaceda, Leandro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Diaz, Ariel I.. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Rostagno, Adrian. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
Fil: Aggio, Santiago Lujan. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Iparraguirre, Javier. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina
SAIV - Simposio Argentino de Imágenes y Visión
Salta
Argentina
Sociedad Argentina de Informática
Universidad Nacional de Salta - Materia
-
COMPUTER VISION
VIDEO SUMMARIZATION
MACHINE LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/159309
Ver los metadatos del registro completo
id |
CONICETDig_927d4a5d9d9193529422ce531abd6b78 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/159309 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An open source quantitative evaluation framework for automatic video summarization algorithmsBalmaceda, LeandroDiaz, Ariel I.Rostagno, AdrianAggio, Santiago LujanBlanco, Anibal ManuelIparraguirre, JavierCOMPUTER VISIONVIDEO SUMMARIZATIONMACHINE LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented.Fil: Balmaceda, Leandro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Diaz, Ariel I.. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Rostagno, Adrian. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaFil: Aggio, Santiago Lujan. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Iparraguirre, Javier. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; ArgentinaSAIV - Simposio Argentino de Imágenes y VisiónSaltaArgentinaSociedad Argentina de InformáticaUniversidad Nacional de SaltaUniversidad Nacional de Salta2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159309An open source quantitative evaluation framework for automatic video summarization algorithms; SAIV - Simposio Argentino de Imágenes y Visión; Salta; Argentina; 2019; 58-632683-8990CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://48jaiio.sadio.org.arinfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/issue/archiveNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:25Zoai:ri.conicet.gov.ar:11336/159309instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:26.271CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An open source quantitative evaluation framework for automatic video summarization algorithms |
title |
An open source quantitative evaluation framework for automatic video summarization algorithms |
spellingShingle |
An open source quantitative evaluation framework for automatic video summarization algorithms Balmaceda, Leandro COMPUTER VISION VIDEO SUMMARIZATION MACHINE LEARNING |
title_short |
An open source quantitative evaluation framework for automatic video summarization algorithms |
title_full |
An open source quantitative evaluation framework for automatic video summarization algorithms |
title_fullStr |
An open source quantitative evaluation framework for automatic video summarization algorithms |
title_full_unstemmed |
An open source quantitative evaluation framework for automatic video summarization algorithms |
title_sort |
An open source quantitative evaluation framework for automatic video summarization algorithms |
dc.creator.none.fl_str_mv |
Balmaceda, Leandro Diaz, Ariel I. Rostagno, Adrian Aggio, Santiago Lujan Blanco, Anibal Manuel Iparraguirre, Javier |
author |
Balmaceda, Leandro |
author_facet |
Balmaceda, Leandro Diaz, Ariel I. Rostagno, Adrian Aggio, Santiago Lujan Blanco, Anibal Manuel Iparraguirre, Javier |
author_role |
author |
author2 |
Diaz, Ariel I. Rostagno, Adrian Aggio, Santiago Lujan Blanco, Anibal Manuel Iparraguirre, Javier |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COMPUTER VISION VIDEO SUMMARIZATION MACHINE LEARNING |
topic |
COMPUTER VISION VIDEO SUMMARIZATION MACHINE LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented. Fil: Balmaceda, Leandro. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Diaz, Ariel I.. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Rostagno, Adrian. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina Fil: Aggio, Santiago Lujan. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Iparraguirre, Javier. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca; Argentina SAIV - Simposio Argentino de Imágenes y Visión Salta Argentina Sociedad Argentina de Informática Universidad Nacional de Salta |
description |
The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/159309 An open source quantitative evaluation framework for automatic video summarization algorithms; SAIV - Simposio Argentino de Imágenes y Visión; Salta; Argentina; 2019; 58-63 2683-8990 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/159309 |
identifier_str_mv |
An open source quantitative evaluation framework for automatic video summarization algorithms; SAIV - Simposio Argentino de Imágenes y Visión; Salta; Argentina; 2019; 58-63 2683-8990 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://48jaiio.sadio.org.ar info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/issue/archive |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Salta |
publisher.none.fl_str_mv |
Universidad Nacional de Salta |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269461093023744 |
score |
13.13397 |