An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms
- Autores
- Balmaceda, Leandro; Diaz, Ariel I.; Rostagno, Adrián; Aggio, Santiago L.; Blanco, Anibal; Iparraguirre, Javier
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Algorithms
Video summarization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/89188
Ver los metadatos del registro completo
id |
SEDICI_e5da6d78c87a78ef84f77d39e1d8fbce |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/89188 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization AlgorithmsBalmaceda, LeandroDiaz, Ariel I.Rostagno, AdriánAggio, Santiago L.Blanco, AnibalIparraguirre, JavierCiencias InformáticasAlgorithmsVideo summarizationThe creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf58-63http://sedici.unlp.edu.ar/handle/10915/89188enginfo:eu-repo/semantics/altIdentifier/issn/2683-8990info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:50:33Zoai:sedici.unlp.edu.ar:10915/89188Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:50:33.85SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
title |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
spellingShingle |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms Balmaceda, Leandro Ciencias Informáticas Algorithms Video summarization |
title_short |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
title_full |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
title_fullStr |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
title_full_unstemmed |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
title_sort |
An Open Source Quantitative Evaluation Framework for Automatic Video Summarization Algorithms |
dc.creator.none.fl_str_mv |
Balmaceda, Leandro Diaz, Ariel I. Rostagno, Adrián Aggio, Santiago L. Blanco, Anibal Iparraguirre, Javier |
author |
Balmaceda, Leandro |
author_facet |
Balmaceda, Leandro Diaz, Ariel I. Rostagno, Adrián Aggio, Santiago L. Blanco, Anibal Iparraguirre, Javier |
author_role |
author |
author2 |
Diaz, Ariel I. Rostagno, Adrián Aggio, Santiago L. Blanco, Anibal Iparraguirre, Javier |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms Video summarization |
topic |
Ciencias Informáticas Algorithms Video summarization |
dc.description.none.fl_txt_mv |
The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented. Sociedad Argentina de Informática e Investigación Operativa |
description |
The creation, consumption, and manipulation of video play a central role in everyday life as the amount of video data is growing at an exponential rate. Video summarization consists on producing a condensed output from a video that allows humans to rapidly understand and browse the content of the original source. Although there are several evaluation approaches proposed in the literature, multiple challenges make the quantitative evaluation of a summarization a complex process. In this paper we present a completely open video summarization evaluation framework that is compatible with existing datasets and published results. Standard metrics are considered and a new metric that captures unbalanced-class video summarization evaluation is proposed. Two legacy datasets are integrated in a standard format. Finally, new quantitative results based on already published algorithms are presented. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/89188 |
url |
http://sedici.unlp.edu.ar/handle/10915/89188 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2683-8990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 58-63 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260383654477824 |
score |
13.13397 |