On the critical forcing amplitude of forced nonlinear oscillators
- Autores
- Febbo, Mariano; Ji, Jinchen C.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution.
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Ji, Jinchen C.. University of Technology; Australia - Materia
-
CRITICAL FORCING AMPLITUDE
FORCED NONLINEAR SYSTEMS
FREQUENCY-RESPONSE CURVE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26377
Ver los metadatos del registro completo
id |
CONICETDig_f7eb8ddbdf42f3281df42e6916e187e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26377 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the critical forcing amplitude of forced nonlinear oscillatorsFebbo, MarianoJi, Jinchen C.CRITICAL FORCING AMPLITUDEFORCED NONLINEAR SYSTEMSFREQUENCY-RESPONSE CURVEhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution.Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ji, Jinchen C.. University of Technology; AustraliaDe Gruyter2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26377Febbo, Mariano; Ji, Jinchen C.; On the critical forcing amplitude of forced nonlinear oscillators; De Gruyter; Central European Journal of Engineering; 3; 4; 12-2013; 764-7701896-15412081-9927enginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s13531-013-0117-6info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/eng.2013.3.issue-4/s13531-013-0117-6/s13531-013-0117-6.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:55Zoai:ri.conicet.gov.ar:11336/26377instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:55.674CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the critical forcing amplitude of forced nonlinear oscillators |
title |
On the critical forcing amplitude of forced nonlinear oscillators |
spellingShingle |
On the critical forcing amplitude of forced nonlinear oscillators Febbo, Mariano CRITICAL FORCING AMPLITUDE FORCED NONLINEAR SYSTEMS FREQUENCY-RESPONSE CURVE |
title_short |
On the critical forcing amplitude of forced nonlinear oscillators |
title_full |
On the critical forcing amplitude of forced nonlinear oscillators |
title_fullStr |
On the critical forcing amplitude of forced nonlinear oscillators |
title_full_unstemmed |
On the critical forcing amplitude of forced nonlinear oscillators |
title_sort |
On the critical forcing amplitude of forced nonlinear oscillators |
dc.creator.none.fl_str_mv |
Febbo, Mariano Ji, Jinchen C. |
author |
Febbo, Mariano |
author_facet |
Febbo, Mariano Ji, Jinchen C. |
author_role |
author |
author2 |
Ji, Jinchen C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
CRITICAL FORCING AMPLITUDE FORCED NONLINEAR SYSTEMS FREQUENCY-RESPONSE CURVE |
topic |
CRITICAL FORCING AMPLITUDE FORCED NONLINEAR SYSTEMS FREQUENCY-RESPONSE CURVE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution. Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina Fil: Ji, Jinchen C.. University of Technology; Australia |
description |
The steady-state response of forced single degree-of-freedom weakly nonlinear oscillators under primary resonance conditions can exhibit saddle-node bifurcations, jump and hysteresis phenomena, if the amplitude of the excitation exceeds a certain value. This critical value of excitation amplitude or critical forcing amplitude plays an important role in determining the occurrence of saddle-node bifurcations in the frequency-response curve. This work develops an alternative method to determine the critical forcing amplitude for single degree-of-freedom nonlinear oscillators. Based on Lagrange multipliers approach, the proposed method considers the calculation of the critical forcing amplitude as an optimization problem with constraints that are imposed by the existence of locations of vertical tangency. In comparison with the Gröbner basis method, the proposed approach is more straightforward and thus easy to apply for finding the critical forcing amplitude both analytically and numerically. Three examples are given to confirm the validity of the theoretical predictions. The first two present the analytical form for the critical forcing amplitude and the third one is an example of a numerically computed solution. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26377 Febbo, Mariano; Ji, Jinchen C.; On the critical forcing amplitude of forced nonlinear oscillators; De Gruyter; Central European Journal of Engineering; 3; 4; 12-2013; 764-770 1896-1541 2081-9927 |
url |
http://hdl.handle.net/11336/26377 |
identifier_str_mv |
Febbo, Mariano; Ji, Jinchen C.; On the critical forcing amplitude of forced nonlinear oscillators; De Gruyter; Central European Journal of Engineering; 3; 4; 12-2013; 764-770 1896-1541 2081-9927 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2478/s13531-013-0117-6 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/eng.2013.3.issue-4/s13531-013-0117-6/s13531-013-0117-6.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614475152359424 |
score |
13.070432 |