Nonlinear drag forces and the thermostatistics of overdamped motion

Autores
Plastino, Ángel Ricardo; Wedemann, R. S.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Diverse processes in statistical physics are usually analyzed on the assumption that the drag force acting on a test particle moving in a resisting medium is linear on the velocity of the particle. However, nonlinear drag forces do appear in relevant situations that are currently the focus of experimental and theoretical work. Motivated by these developments, we explore the consequences of nonlinear drag forces for the thermostatistics of systems of interacting particles performing overdamped motion. We derive a family of nonlinear Fokker-Planck equations for these systems, taking into account the effects of nonlinear drag forces. We investigate the main properties of these evolution equations, including an H-theorem, and obtain exact solutions of the stretched q-exponential form.
Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wedemann, R. S.. Universidade do Estado de Rio do Janeiro; Brasil
Fil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil
Materia
Nonlinear Drag Forces
Nonlinear Fokker-Planck Equation
H-Theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/176765

id CONICETDig_c45e54d64806da06bb9242eeeeda6289
oai_identifier_str oai:ri.conicet.gov.ar:11336/176765
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear drag forces and the thermostatistics of overdamped motionPlastino, Ángel RicardoWedemann, R. S.Curado, E. M. F.Nobre, F. D.Tsallis, C.Nonlinear Drag ForcesNonlinear Fokker-Planck EquationH-Theoremhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Diverse processes in statistical physics are usually analyzed on the assumption that the drag force acting on a test particle moving in a resisting medium is linear on the velocity of the particle. However, nonlinear drag forces do appear in relevant situations that are currently the focus of experimental and theoretical work. Motivated by these developments, we explore the consequences of nonlinear drag forces for the thermostatistics of systems of interacting particles performing overdamped motion. We derive a family of nonlinear Fokker-Planck equations for these systems, taking into account the effects of nonlinear drag forces. We investigate the main properties of these evolution equations, including an H-theorem, and obtain exact solutions of the stretched q-exponential form.Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wedemann, R. S.. Universidade do Estado de Rio do Janeiro; BrasilFil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; BrasilAmerican Physical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/176765Plastino, Ángel Ricardo; Wedemann, R. S.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; Nonlinear drag forces and the thermostatistics of overdamped motion; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-82470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012129info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:30Zoai:ri.conicet.gov.ar:11336/176765instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:31.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear drag forces and the thermostatistics of overdamped motion
title Nonlinear drag forces and the thermostatistics of overdamped motion
spellingShingle Nonlinear drag forces and the thermostatistics of overdamped motion
Plastino, Ángel Ricardo
Nonlinear Drag Forces
Nonlinear Fokker-Planck Equation
H-Theorem
title_short Nonlinear drag forces and the thermostatistics of overdamped motion
title_full Nonlinear drag forces and the thermostatistics of overdamped motion
title_fullStr Nonlinear drag forces and the thermostatistics of overdamped motion
title_full_unstemmed Nonlinear drag forces and the thermostatistics of overdamped motion
title_sort Nonlinear drag forces and the thermostatistics of overdamped motion
dc.creator.none.fl_str_mv Plastino, Ángel Ricardo
Wedemann, R. S.
Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author Plastino, Ángel Ricardo
author_facet Plastino, Ángel Ricardo
Wedemann, R. S.
Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author_role author
author2 Wedemann, R. S.
Curado, E. M. F.
Nobre, F. D.
Tsallis, C.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Nonlinear Drag Forces
Nonlinear Fokker-Planck Equation
H-Theorem
topic Nonlinear Drag Forces
Nonlinear Fokker-Planck Equation
H-Theorem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Diverse processes in statistical physics are usually analyzed on the assumption that the drag force acting on a test particle moving in a resisting medium is linear on the velocity of the particle. However, nonlinear drag forces do appear in relevant situations that are currently the focus of experimental and theoretical work. Motivated by these developments, we explore the consequences of nonlinear drag forces for the thermostatistics of systems of interacting particles performing overdamped motion. We derive a family of nonlinear Fokker-Planck equations for these systems, taking into account the effects of nonlinear drag forces. We investigate the main properties of these evolution equations, including an H-theorem, and obtain exact solutions of the stretched q-exponential form.
Fil: Plastino, Ángel Ricardo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wedemann, R. S.. Universidade do Estado de Rio do Janeiro; Brasil
Fil: Curado, E. M. F.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil
description Diverse processes in statistical physics are usually analyzed on the assumption that the drag force acting on a test particle moving in a resisting medium is linear on the velocity of the particle. However, nonlinear drag forces do appear in relevant situations that are currently the focus of experimental and theoretical work. Motivated by these developments, we explore the consequences of nonlinear drag forces for the thermostatistics of systems of interacting particles performing overdamped motion. We derive a family of nonlinear Fokker-Planck equations for these systems, taking into account the effects of nonlinear drag forces. We investigate the main properties of these evolution equations, including an H-theorem, and obtain exact solutions of the stretched q-exponential form.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/176765
Plastino, Ángel Ricardo; Wedemann, R. S.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; Nonlinear drag forces and the thermostatistics of overdamped motion; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/176765
identifier_str_mv Plastino, Ángel Ricardo; Wedemann, R. S.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.; Nonlinear drag forces and the thermostatistics of overdamped motion; American Physical Society; Physical Review E; 98; 1; 7-2018; 1-8
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.012129
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613557072691200
score 13.070432