Curl forces and the nonlinear Fokker-Planck equation

Autores
Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil
Materia
Nonlinear Fokker-Planck Equation
Curl Forces
H-Theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38578

id CONICETDig_4d30ec43206ba930b6f416aaa03047d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/38578
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Curl forces and the nonlinear Fokker-Planck equationWedemann, R. S.Plastino, Ángel RicardoTsallis, C.Nonlinear Fokker-Planck EquationCurl ForcesH-Theoremhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; BrasilFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; BrasilAmerican Physical Society2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38578Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 0621052470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.062105info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:04Zoai:ri.conicet.gov.ar:11336/38578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:04.748CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Curl forces and the nonlinear Fokker-Planck equation
title Curl forces and the nonlinear Fokker-Planck equation
spellingShingle Curl forces and the nonlinear Fokker-Planck equation
Wedemann, R. S.
Nonlinear Fokker-Planck Equation
Curl Forces
H-Theorem
title_short Curl forces and the nonlinear Fokker-Planck equation
title_full Curl forces and the nonlinear Fokker-Planck equation
title_fullStr Curl forces and the nonlinear Fokker-Planck equation
title_full_unstemmed Curl forces and the nonlinear Fokker-Planck equation
title_sort Curl forces and the nonlinear Fokker-Planck equation
dc.creator.none.fl_str_mv Wedemann, R. S.
Plastino, Ángel Ricardo
Tsallis, C.
author Wedemann, R. S.
author_facet Wedemann, R. S.
Plastino, Ángel Ricardo
Tsallis, C.
author_role author
author2 Plastino, Ángel Ricardo
Tsallis, C.
author2_role author
author
dc.subject.none.fl_str_mv Nonlinear Fokker-Planck Equation
Curl Forces
H-Theorem
topic Nonlinear Fokker-Planck Equation
Curl Forces
H-Theorem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil
description Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38578
Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 062105
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38578
identifier_str_mv Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 062105
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.062105
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062105
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981154392637440
score 12.48226