Curl forces and the nonlinear Fokker-Planck equation
- Autores
- Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.
Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil - Materia
-
Nonlinear Fokker-Planck Equation
Curl Forces
H-Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38578
Ver los metadatos del registro completo
id |
CONICETDig_4d30ec43206ba930b6f416aaa03047d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38578 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Curl forces and the nonlinear Fokker-Planck equationWedemann, R. S.Plastino, Ángel RicardoTsallis, C.Nonlinear Fokker-Planck EquationCurl ForcesH-Theoremhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed.Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; BrasilFil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; BrasilAmerican Physical Society2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38578Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 0621052470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.062105info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:04Zoai:ri.conicet.gov.ar:11336/38578instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:04.748CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Curl forces and the nonlinear Fokker-Planck equation |
title |
Curl forces and the nonlinear Fokker-Planck equation |
spellingShingle |
Curl forces and the nonlinear Fokker-Planck equation Wedemann, R. S. Nonlinear Fokker-Planck Equation Curl Forces H-Theorem |
title_short |
Curl forces and the nonlinear Fokker-Planck equation |
title_full |
Curl forces and the nonlinear Fokker-Planck equation |
title_fullStr |
Curl forces and the nonlinear Fokker-Planck equation |
title_full_unstemmed |
Curl forces and the nonlinear Fokker-Planck equation |
title_sort |
Curl forces and the nonlinear Fokker-Planck equation |
dc.creator.none.fl_str_mv |
Wedemann, R. S. Plastino, Ángel Ricardo Tsallis, C. |
author |
Wedemann, R. S. |
author_facet |
Wedemann, R. S. Plastino, Ángel Ricardo Tsallis, C. |
author_role |
author |
author2 |
Plastino, Ángel Ricardo Tsallis, C. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Nonlinear Fokker-Planck Equation Curl Forces H-Theorem |
topic |
Nonlinear Fokker-Planck Equation Curl Forces H-Theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed. Fil: Wedemann, R. S.. Universidade do Estado do Rio de Janeiro; Brasil Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Físicas; Brasil |
description |
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are q exponentials of an appropriate potential function, are determined. It is proved that when these stationary solutions exist, the nonlinear Fokker-Planck equations satisfy an H theorem in terms of a free-energy-like quantity involving the Sq entropy. A particular two-dimensional model admitting analytical, time-dependent q-Gaussian solutions is discussed in detail. This model describes a system of particles with short-range interactions, performing overdamped motion under drag effects due to a rotating resisting medium. It is related to models that have been recently applied to the study of type-II superconductors. The relevance of the present developments to the study of complex systems in physics, astronomy, and biology is discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38578 Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 062105 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38578 |
identifier_str_mv |
Wedemann, R. S.; Plastino, Ángel Ricardo; Tsallis, C.; Curl forces and the nonlinear Fokker-Planck equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 6; 12-2016; 1-10; 062105 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.062105 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.062105 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981154392637440 |
score |
12.48226 |