Frequency stabilization in nonlinear micromechanical oscillators

Autores
Antonio, Dario; Zanette, Damian Horacio; López, Daniel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.
Fil: Antonio, Dario. Argonne National Laboratory. Center for Nanoscale Materials; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: López, Daniel. Argonne National Laboratory. Center for Nanoscale Materials; Estados Unidos
Materia
Micromechanical Oscillator
Nonlinear Oscillator
Frequency Stabilization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11216

id CONICETDig_40eee4f2a61ec2de001faf2b4369b80d
oai_identifier_str oai:ri.conicet.gov.ar:11336/11216
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Frequency stabilization in nonlinear micromechanical oscillatorsAntonio, DarioZanette, Damian HoracioLópez, DanielMicromechanical OscillatorNonlinear OscillatorFrequency Stabilizationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.Fil: Antonio, Dario. Argonne National Laboratory. Center for Nanoscale Materials; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López, Daniel. Argonne National Laboratory. Center for Nanoscale Materials; Estados UnidosSpringer2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11216Antonio, Dario; Zanette, Damian Horacio; López, Daniel ; Frequency stabilization in nonlinear micromechanical oscillators; Springer; Nature Communications; 3; 1-2012; 8061-80662041-1723enginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/ncomms1813info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms1813info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:35Zoai:ri.conicet.gov.ar:11336/11216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:35.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Frequency stabilization in nonlinear micromechanical oscillators
title Frequency stabilization in nonlinear micromechanical oscillators
spellingShingle Frequency stabilization in nonlinear micromechanical oscillators
Antonio, Dario
Micromechanical Oscillator
Nonlinear Oscillator
Frequency Stabilization
title_short Frequency stabilization in nonlinear micromechanical oscillators
title_full Frequency stabilization in nonlinear micromechanical oscillators
title_fullStr Frequency stabilization in nonlinear micromechanical oscillators
title_full_unstemmed Frequency stabilization in nonlinear micromechanical oscillators
title_sort Frequency stabilization in nonlinear micromechanical oscillators
dc.creator.none.fl_str_mv Antonio, Dario
Zanette, Damian Horacio
López, Daniel
author Antonio, Dario
author_facet Antonio, Dario
Zanette, Damian Horacio
López, Daniel
author_role author
author2 Zanette, Damian Horacio
López, Daniel
author2_role author
author
dc.subject.none.fl_str_mv Micromechanical Oscillator
Nonlinear Oscillator
Frequency Stabilization
topic Micromechanical Oscillator
Nonlinear Oscillator
Frequency Stabilization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.
Fil: Antonio, Dario. Argonne National Laboratory. Center for Nanoscale Materials; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: López, Daniel. Argonne National Laboratory. Center for Nanoscale Materials; Estados Unidos
description Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11216
Antonio, Dario; Zanette, Damian Horacio; López, Daniel ; Frequency stabilization in nonlinear micromechanical oscillators; Springer; Nature Communications; 3; 1-2012; 8061-8066
2041-1723
url http://hdl.handle.net/11336/11216
identifier_str_mv Antonio, Dario; Zanette, Damian Horacio; López, Daniel ; Frequency stabilization in nonlinear micromechanical oscillators; Springer; Nature Communications; 3; 1-2012; 8061-8066
2041-1723
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/ncomms1813
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms1813
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981016869797888
score 12.993085