Energy dependent potential problems for the one dimensional p-Laplacian operator
- Autores
- Koyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential.
Fil: Koyunbakan, Hikmet. Firat Universitesi; Turquía
Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ASYMPTOTIC BEHAVIOR
EIGENVALUES
NODAL INVERSE PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116929
Ver los metadatos del registro completo
id |
CONICETDig_f7b23dc84e9af55b5d5f6d75843135ad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116929 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Energy dependent potential problems for the one dimensional p-Laplacian operatorKoyunbakan, HikmetPinasco, Juan PabloScarola, CristianASYMPTOTIC BEHAVIOREIGENVALUESNODAL INVERSE PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential.Fil: Koyunbakan, Hikmet. Firat Universitesi; TurquíaFil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116929Koyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian; Energy dependent potential problems for the one dimensional p-Laplacian operator; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 45; 2-2019; 285-2981468-1218CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2018.07.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1468121818305649info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:08Zoai:ri.conicet.gov.ar:11336/116929instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:08.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
title |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
spellingShingle |
Energy dependent potential problems for the one dimensional p-Laplacian operator Koyunbakan, Hikmet ASYMPTOTIC BEHAVIOR EIGENVALUES NODAL INVERSE PROBLEM |
title_short |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
title_full |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
title_fullStr |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
title_full_unstemmed |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
title_sort |
Energy dependent potential problems for the one dimensional p-Laplacian operator |
dc.creator.none.fl_str_mv |
Koyunbakan, Hikmet Pinasco, Juan Pablo Scarola, Cristian |
author |
Koyunbakan, Hikmet |
author_facet |
Koyunbakan, Hikmet Pinasco, Juan Pablo Scarola, Cristian |
author_role |
author |
author2 |
Pinasco, Juan Pablo Scarola, Cristian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC BEHAVIOR EIGENVALUES NODAL INVERSE PROBLEM |
topic |
ASYMPTOTIC BEHAVIOR EIGENVALUES NODAL INVERSE PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential. Fil: Koyunbakan, Hikmet. Firat Universitesi; Turquía Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this work we analyze a nonlinear eigenvalue problem for the p-Laplacian operator with zero Dirichlet boundary conditions. We assume that the problem has a potential which depends on the eigenvalue parameter, and we show that, for n big enough, there exists a real eigenvalue λn, and their corresponding eigenfunctions have exactly n nodal domains. We characterize the asymptotic behavior of these eigenvalues, obtaining two terms in the asymptotic expansion of λn in powers of n. Finally, we study the inverse nodal problem in the case of energy dependent potentials, showing that some subset of the zeros of the corresponding eigenfunctions is enough to determine the main term of the potential. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116929 Koyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian; Energy dependent potential problems for the one dimensional p-Laplacian operator; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 45; 2-2019; 285-298 1468-1218 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116929 |
identifier_str_mv |
Koyunbakan, Hikmet; Pinasco, Juan Pablo; Scarola, Cristian; Energy dependent potential problems for the one dimensional p-Laplacian operator; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 45; 2-2019; 285-298 1468-1218 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nonrwa.2018.07.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1468121818305649 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270032860545024 |
score |
13.13397 |