Fisher and Shannon Functionals for Hyperbolic Diffusion

Autores
Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).
Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Materia
HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/221247

id CONICETDig_877ce1c9d6e5d2197b865f7a570a2c22
oai_identifier_str oai:ri.conicet.gov.ar:11336/221247
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fisher and Shannon Functionals for Hyperbolic DiffusionCáceres, Manuel O.Nizama Mendoza, Marco AlfredoPennini, Flavia CatalinaHYPERBOLIC DIFFUSIONTELEGRAPHER’S EQUATIONSHANNON ENTROPYCRAMER-RAO BOUNDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaMolecular Diversity Preservation International2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/221247Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-161099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:16Zoai:ri.conicet.gov.ar:11336/221247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:16.97CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fisher and Shannon Functionals for Hyperbolic Diffusion
title Fisher and Shannon Functionals for Hyperbolic Diffusion
spellingShingle Fisher and Shannon Functionals for Hyperbolic Diffusion
Cáceres, Manuel O.
HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND
title_short Fisher and Shannon Functionals for Hyperbolic Diffusion
title_full Fisher and Shannon Functionals for Hyperbolic Diffusion
title_fullStr Fisher and Shannon Functionals for Hyperbolic Diffusion
title_full_unstemmed Fisher and Shannon Functionals for Hyperbolic Diffusion
title_sort Fisher and Shannon Functionals for Hyperbolic Diffusion
dc.creator.none.fl_str_mv Cáceres, Manuel O.
Nizama Mendoza, Marco Alfredo
Pennini, Flavia Catalina
author Cáceres, Manuel O.
author_facet Cáceres, Manuel O.
Nizama Mendoza, Marco Alfredo
Pennini, Flavia Catalina
author_role author
author2 Nizama Mendoza, Marco Alfredo
Pennini, Flavia Catalina
author2_role author
author
dc.subject.none.fl_str_mv HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND
topic HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).
Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
description The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/221247
Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/221247
identifier_str_mv Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627
info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269212915007488
score 13.13397