Fisher and Shannon Functionals for Hyperbolic Diffusion
- Autores
- Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).
Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina - Materia
-
HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/221247
Ver los metadatos del registro completo
| id |
CONICETDig_877ce1c9d6e5d2197b865f7a570a2c22 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/221247 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Fisher and Shannon Functionals for Hyperbolic DiffusionCáceres, Manuel O.Nizama Mendoza, Marco AlfredoPennini, Flavia CatalinaHYPERBOLIC DIFFUSIONTELEGRAPHER’S EQUATIONSHANNON ENTROPYCRAMER-RAO BOUNDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaMolecular Diversity Preservation International2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/221247Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-161099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:42:15Zoai:ri.conicet.gov.ar:11336/221247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:42:15.863CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| title |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| spellingShingle |
Fisher and Shannon Functionals for Hyperbolic Diffusion Cáceres, Manuel O. HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
| title_short |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| title_full |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| title_fullStr |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| title_full_unstemmed |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| title_sort |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
| dc.creator.none.fl_str_mv |
Cáceres, Manuel O. Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
| author |
Cáceres, Manuel O. |
| author_facet |
Cáceres, Manuel O. Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
| author_role |
author |
| author2 |
Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
| topic |
HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times). Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina |
| description |
The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times). |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/221247 Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16 1099-4300 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/221247 |
| identifier_str_mv |
Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16 1099-4300 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627 info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597631438159872 |
| score |
12.976206 |