Fisher and Shannon Functionals for Hyperbolic Diffusion
- Autores
- Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).
Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina - Materia
-
HYPERBOLIC DIFFUSION
TELEGRAPHER’S EQUATION
SHANNON ENTROPY
CRAMER-RAO BOUND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/221247
Ver los metadatos del registro completo
id |
CONICETDig_877ce1c9d6e5d2197b865f7a570a2c22 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/221247 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fisher and Shannon Functionals for Hyperbolic DiffusionCáceres, Manuel O.Nizama Mendoza, Marco AlfredoPennini, Flavia CatalinaHYPERBOLIC DIFFUSIONTELEGRAPHER’S EQUATIONSHANNON ENTROPYCRAMER-RAO BOUNDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times).Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaMolecular Diversity Preservation International2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/221247Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-161099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:16Zoai:ri.conicet.gov.ar:11336/221247instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:16.97CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
title |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
spellingShingle |
Fisher and Shannon Functionals for Hyperbolic Diffusion Cáceres, Manuel O. HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
title_short |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
title_full |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
title_fullStr |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
title_full_unstemmed |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
title_sort |
Fisher and Shannon Functionals for Hyperbolic Diffusion |
dc.creator.none.fl_str_mv |
Cáceres, Manuel O. Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
author |
Cáceres, Manuel O. |
author_facet |
Cáceres, Manuel O. Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
author_role |
author |
author2 |
Nizama Mendoza, Marco Alfredo Pennini, Flavia Catalina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
topic |
HYPERBOLIC DIFFUSION TELEGRAPHER’S EQUATION SHANNON ENTROPY CRAMER-RAO BOUND |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times). Fil: Cáceres, Manuel O.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Nizama Mendoza, Marco Alfredo. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pennini, Flavia Catalina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina |
description |
The complexity measure for the distribution in space-time of a finite-velocity diffusionprocess is calculated. Numerical results are presented for the calculation of Fisher’s information,Shannon’s entropy, and the Cramér–Rao inequality, all of which are associated with a positivelynormalized solution to the telegrapher’s equation. In the framework of hyperbolic diffusion, thenon-local Fisher’s information with the x-parameter is related to the local Fisher’s information with thet-parameter. A perturbation theory is presented to calculate Shannon’s entropy of the telegrapher’sequation at long times, as well as a toy model to describe the system as an attenuated wave in theballistic regime (short times). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/221247 Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/221247 |
identifier_str_mv |
Cáceres, Manuel O.; Nizama Mendoza, Marco Alfredo; Pennini, Flavia Catalina; Fisher and Shannon Functionals for Hyperbolic Diffusion; Molecular Diversity Preservation International; Entropy; 25; 12; 12-2023; 1-16 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/25/12/1627 info:eu-repo/semantics/altIdentifier/doi/10.3390/e25121627 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269212915007488 |
score |
13.13397 |