Metastability for small random perturbations of a PDE with blow-up
- Autores
- Groisman, Pablo Jose; Saglietti, Santiago Juan; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study random perturbations of a reaction–diffusion equation with a unique stable equilibrium and solutions that blow-up in finite time. If the strength of the perturbation ε>0 is small and the initial data is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which leads to explosion in a finite time (but exponentially large in ε−2). Moreover, for initial data in the domain of explosion we show that the explosion times converge to the one of the deterministic solution.
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. NYU Shanghai. Institute of Mathematical Sciences; China
Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Technion - Israel Institute of Technology; Israel
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
BLOW-UP
METASTABILITY
RANDOM PERTURBATIONS
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60062
Ver los metadatos del registro completo
id |
CONICETDig_f772a46fa482a081dd8b93a23d603b02 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60062 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metastability for small random perturbations of a PDE with blow-upGroisman, Pablo JoseSaglietti, Santiago JuanSaintier, Nicolas Bernard ClaudeBLOW-UPMETASTABILITYRANDOM PERTURBATIONSSTOCHASTIC PARTIAL DIFFERENTIAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study random perturbations of a reaction–diffusion equation with a unique stable equilibrium and solutions that blow-up in finite time. If the strength of the perturbation ε>0 is small and the initial data is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which leads to explosion in a finite time (but exponentially large in ε−2). Moreover, for initial data in the domain of explosion we show that the explosion times converge to the one of the deterministic solution.Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. NYU Shanghai. Institute of Mathematical Sciences; ChinaFil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Technion - Israel Institute of Technology; IsraelFil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60062Groisman, Pablo Jose; Saglietti, Santiago Juan; Saintier, Nicolas Bernard Claude; Metastability for small random perturbations of a PDE with blow-up; Elsevier Science; Stochastic Processes And Their Applications; 128; 5; 5-2018; 1558-15890304-4149CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.spa.2017.08.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304414917301965info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.01724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:49Zoai:ri.conicet.gov.ar:11336/60062instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:49.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metastability for small random perturbations of a PDE with blow-up |
title |
Metastability for small random perturbations of a PDE with blow-up |
spellingShingle |
Metastability for small random perturbations of a PDE with blow-up Groisman, Pablo Jose BLOW-UP METASTABILITY RANDOM PERTURBATIONS STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS |
title_short |
Metastability for small random perturbations of a PDE with blow-up |
title_full |
Metastability for small random perturbations of a PDE with blow-up |
title_fullStr |
Metastability for small random perturbations of a PDE with blow-up |
title_full_unstemmed |
Metastability for small random perturbations of a PDE with blow-up |
title_sort |
Metastability for small random perturbations of a PDE with blow-up |
dc.creator.none.fl_str_mv |
Groisman, Pablo Jose Saglietti, Santiago Juan Saintier, Nicolas Bernard Claude |
author |
Groisman, Pablo Jose |
author_facet |
Groisman, Pablo Jose Saglietti, Santiago Juan Saintier, Nicolas Bernard Claude |
author_role |
author |
author2 |
Saglietti, Santiago Juan Saintier, Nicolas Bernard Claude |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BLOW-UP METASTABILITY RANDOM PERTURBATIONS STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS |
topic |
BLOW-UP METASTABILITY RANDOM PERTURBATIONS STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study random perturbations of a reaction–diffusion equation with a unique stable equilibrium and solutions that blow-up in finite time. If the strength of the perturbation ε>0 is small and the initial data is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which leads to explosion in a finite time (but exponentially large in ε−2). Moreover, for initial data in the domain of explosion we show that the explosion times converge to the one of the deterministic solution. Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. NYU Shanghai. Institute of Mathematical Sciences; China Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Technion - Israel Institute of Technology; Israel Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study random perturbations of a reaction–diffusion equation with a unique stable equilibrium and solutions that blow-up in finite time. If the strength of the perturbation ε>0 is small and the initial data is in the domain of attraction of the stable equilibrium, the system exhibits metastable behavior: its time averages remain stable around this equilibrium until an abrupt and unpredictable transition occurs which leads to explosion in a finite time (but exponentially large in ε−2). Moreover, for initial data in the domain of explosion we show that the explosion times converge to the one of the deterministic solution. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60062 Groisman, Pablo Jose; Saglietti, Santiago Juan; Saintier, Nicolas Bernard Claude; Metastability for small random perturbations of a PDE with blow-up; Elsevier Science; Stochastic Processes And Their Applications; 128; 5; 5-2018; 1558-1589 0304-4149 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60062 |
identifier_str_mv |
Groisman, Pablo Jose; Saglietti, Santiago Juan; Saintier, Nicolas Bernard Claude; Metastability for small random perturbations of a PDE with blow-up; Elsevier Science; Stochastic Processes And Their Applications; 128; 5; 5-2018; 1558-1589 0304-4149 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spa.2017.08.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304414917301965 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.01724 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613157250662400 |
score |
13.070432 |