Small random perturbations of a dynamical system with blow-up
- Autores
- Groisman, P.; Saglietti, S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2012;385(1):150-166
- Materia
-
Blow-up
Explosions
Metastability
Random perturbations
Stochastic differential equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v385_n1_p150_Groisman
Ver los metadatos del registro completo
id |
BDUBAFCEN_63d4e524cf8bb3c8c5c6d12cd5fbd5b0 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v385_n1_p150_Groisman |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Small random perturbations of a dynamical system with blow-upGroisman, P.Saglietti, S.Blow-upExplosionsMetastabilityRandom perturbationsStochastic differential equationsWe study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_GroismanJ. Math. Anal. Appl. 2012;385(1):150-166reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_0022247X_v385_n1_p150_GroismanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.772Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Small random perturbations of a dynamical system with blow-up |
title |
Small random perturbations of a dynamical system with blow-up |
spellingShingle |
Small random perturbations of a dynamical system with blow-up Groisman, P. Blow-up Explosions Metastability Random perturbations Stochastic differential equations |
title_short |
Small random perturbations of a dynamical system with blow-up |
title_full |
Small random perturbations of a dynamical system with blow-up |
title_fullStr |
Small random perturbations of a dynamical system with blow-up |
title_full_unstemmed |
Small random perturbations of a dynamical system with blow-up |
title_sort |
Small random perturbations of a dynamical system with blow-up |
dc.creator.none.fl_str_mv |
Groisman, P. Saglietti, S. |
author |
Groisman, P. |
author_facet |
Groisman, P. Saglietti, S. |
author_role |
author |
author2 |
Saglietti, S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Blow-up Explosions Metastability Random perturbations Stochastic differential equations |
topic |
Blow-up Explosions Metastability Random perturbations Stochastic differential equations |
dc.description.none.fl_txt_mv |
We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_Groisman |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_Groisman |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2012;385(1):150-166 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738661326848 |
score |
13.070432 |