Small random perturbations of a dynamical system with blow-up

Autores
Groisman, P.; Saglietti, S.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2012;385(1):150-166
Materia
Blow-up
Explosions
Metastability
Random perturbations
Stochastic differential equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v385_n1_p150_Groisman

id BDUBAFCEN_63d4e524cf8bb3c8c5c6d12cd5fbd5b0
oai_identifier_str paperaa:paper_0022247X_v385_n1_p150_Groisman
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Small random perturbations of a dynamical system with blow-upGroisman, P.Saglietti, S.Blow-upExplosionsMetastabilityRandom perturbationsStochastic differential equationsWe study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_GroismanJ. Math. Anal. Appl. 2012;385(1):150-166reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_0022247X_v385_n1_p150_GroismanInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.772Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Small random perturbations of a dynamical system with blow-up
title Small random perturbations of a dynamical system with blow-up
spellingShingle Small random perturbations of a dynamical system with blow-up
Groisman, P.
Blow-up
Explosions
Metastability
Random perturbations
Stochastic differential equations
title_short Small random perturbations of a dynamical system with blow-up
title_full Small random perturbations of a dynamical system with blow-up
title_fullStr Small random perturbations of a dynamical system with blow-up
title_full_unstemmed Small random perturbations of a dynamical system with blow-up
title_sort Small random perturbations of a dynamical system with blow-up
dc.creator.none.fl_str_mv Groisman, P.
Saglietti, S.
author Groisman, P.
author_facet Groisman, P.
Saglietti, S.
author_role author
author2 Saglietti, S.
author2_role author
dc.subject.none.fl_str_mv Blow-up
Explosions
Metastability
Random perturbations
Stochastic differential equations
topic Blow-up
Explosions
Metastability
Random perturbations
Stochastic differential equations
dc.description.none.fl_txt_mv We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.
Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study small random perturbations by additive white-noise of a spatial discretization of a reaction-diffusion equation with a stable equilibrium and solutions that blow up in finite time. We prove that the perturbed system blows up with total probability and establish its order of magnitude and asymptotic distribution. For initial data in the domain of explosion we prove that the explosion time converges to the deterministic one while for initial data in the domain of attraction of the stable equilibrium we show that the system exhibits metastable behavior. © 2011 Elsevier Inc.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_Groisman
url http://hdl.handle.net/20.500.12110/paper_0022247X_v385_n1_p150_Groisman
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2012;385(1):150-166
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618738661326848
score 13.070432